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Abstract

Hand gesture recognition plays a crucial role in the do-
main of computer vision, as it enhances human-computer
interaction by enabling intuitive, touch-free control and
communication. While offline methods have made sig-
nificant advances in isolated gesture recognition, real-
world applications demand online and continuous process-
ing. Skeleton-based methods, though effective, face chal-
lenges due to the intricate nature of hand joints and the
diverse 3D motions they induce. This paper introduces
AG-MAE, a novel approach that integrates anatomical con-
straints to guide the self-supervised training of a spatio-
temporal masked autoencoder, enhancing the learning of
3D keypoint representations. By incorporating anatomical
knowledge, AG-MAE learns more discriminative features
for hand poses and movements, subsequently improving on-
line gesture recognition. Evaluation on standard datasets
demonstrates the superiority of our approach and its po-
tential for real-world applications. Code is available at:
https://github.com/o-ikne/AG-MAE.git.

1. Introduction

Online recognition of dynamic hand gestures plays an es-
sential role in computer vision, human-computer interac-
tion (HCI) and virtual reality (VR) applications, enabling
seamless, intuitive and natural interactions between users
and machines. Unlike traditional offline gesture recognition
systems [15, 20, 25], which focus on discrete segmented
gestures, the framework of continuous dynamic gesture
recognition requires interpreting hand movements in a con-
tinuous stream of data, enabling real-time interactions and
feedbacks.

Online gesture recognition raises significant challenges
due to the intricate nature of hand movements and the di-
verse range of motions (ROM) occurring within a contin-
uous flow of non-segmented gestures. Unlike offline sce-
narios, online recognition demands precise localization of
gestures within this continuous flow, necessitating accu-

Figure 1. Hand models (a) without, (b) with anatomical con-
straints: joint angles (θ), bone lengths (l), finger curvature (κ).

rate identification of their start and end timings. Further-
more, real-world applications necessitate real-time process-
ing, implying rapid inference algorithms without compro-
mising accuracy. Ensuring high precision in classification
while minimizing false positives is crucial for ensuring a
natural and reliable interaction experience, particularly in
critical scenarios such as medical operations.

Recent advancements in self-supervised learning have
shown promise in deriving discriminative representations
from unlabeled hand pose data [8, 23, 24, 42]. We ar-
gue that this approach holds significant potential, particu-
larly in the domain of dynamic and continuous hand ges-
ture recognition. Therefore, we propose a method that com-
bines the power of self-supervised learning with anatomi-
cal constraints guidance to overcome the limitations inher-
ent in traditional fully supervised approaches. By integrat-
ing self-supervised skeletal learning and anatomical infor-
mation during pre-training, we aim to extract rich and dis-
criminative representations of hand poses. As illustrated in
Figure 1, anatomical constraints such as bone length, bone
curvature and joint angles can be incorporated as a prior in-
formation into the learning model to ensure consistency in
hand joint position estimation. Ultimately, improving the
discrimination of learned 3D keypoint representations.

Existing few self-supervised learning methods [8, 23,
24] often prioritize model accuracy in matching ground
truth hand poses while neglecting anatomical correctness.
By incorporating anatomical constraints into the learning
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process, as evidenced in prior studies on hand pose esti-
mation [26, 38] and hand tracking [1], we demonstrate im-
proved model capabilities in learning richer representations
of various hand poses and movements.

The following are the primary contributions of our work:
• A spatio-temporal ViT-based model with Fourier em-

bedding: We integrate Fourier feature embedding [40]
into a spatio-temporal vision transformer (ViT) model
to project spatial and temporal coordinates into a high-
frequency domain. This enhancement captures intricate
spatial and temporal dependencies and nuanced patterns
in hand joint data, improving representation accuracy.

• Anatomical guidance for pre-training: We introduce
anatomical constraints into the loss function to guide the
pre-training of the masked autoencoder, ensuring anatom-
ical consistency and learning discriminative features for
various hand poses.

2. Related Work

2.1. Online Hand Gesture Recognition

Online gesture recognition methods extend beyond the
scope of offline methods, which primarily focus on discrete,
segmented gestures. In contrast, online gesture recogni-
tion involves two key tasks: segmenting the continuous data
stream to identify the start and end frames of each gesture,
and accurately labeling these gestures using prior informa-
tion while minimizing delays and avoiding false positives.
Online recognition of hand gestures has been approached
through two main methods:

Full sequence-based methods: analyze an entire se-
quence at once to detect gesture boundaries before forward-
ing the identified segmented candidates to a classification
module. They employ specialized heuristics based on ve-
locity, energy, or trained networks to segment sequence and
subsequently classify each frame subset. Traditional meth-
ods utilized the Histogram of Oriented Gradient (HOG) al-
gorithm in conjunction with an SVM classifier [33]. In con-
trast, recent advancements have predominantly focused on
time-driven models. Köpüklü et al. [28] proposed a two-
model hierarchical architecture based on lightweight CNNs.
Seg-LSTM [7] employs an LSTM with a specialized seg-
mentation network, while the ST-GCN method [6] utilizes
an energy-based segmentation approach with additional ad-
hoc rules. The 2ST-GCN method [2, 6, 17] integrates an
energy-based detection module with a fine-grained classi-
fier for gesture/non-gesture discrimination.

Sliding window-based methods: perform continuous
and simultaneous detection and labeling, often using pre-
trained classifiers with fixed-size input subsequences and
sliding-window models. Sliding window techniques are
common, as shown by the [16] strategy, where a modified
DDNet [46] is trained with segmented and resampled ges-

tures and randomly sampled non-gestural windows. Sim-
ilarly, a modified version of DeepGRU [32] demonstrated
notable performance. TN-FSM [17] uses transform net-
works to classify 10-frame windows, while Causal TCN
trains a temporal convolutional network on 20-frame win-
dows labeled with gesture classes or non-gestures accord-
ing to their intersections with the annotated ground truth
[16, 17]. In addition, OO-dMVMT [12] exploits multiple
temporal views of hand pose and movement to generate
complete gesture descriptions.

2.2. Skeleton-based Self-Supervised Learning

Self-supervised learning has primarily been successful in
image analysis, especially due to the emergence of masked
autoencoders (MAEs) [22], which have been proven suc-
cessful in a variety of applications [3, 9, 22]. Accordingly,
the field of skeletal data has recently seen a growing interest
in exploiting the potential of self-supervised learning.

Contrastive learning methods [29, 34] apply momen-
tum encoders for contrastive learning using single-stream
skeleton sequences. Aiming for more generalized represen-
tations, AimCLR [21] implemented an extreme data aug-
mentation strategy to increase the number of contrastive
pairs and thus improve feature extraction. To prevent over-
fitting and improve feature generalization for action recog-
nition, Ms2l [31] introduced a multitasking self-supervised
framework that focuses on the extraction of joint represen-
tations via motion prediction and puzzle recognition.

MAE-based methods have received considerable atten-
tion. D-MAE [27] introduced a dual MAE focusing on
token completion in a skeletal context, crucial for robust
motion capture. Similarly, SkeletonMAE [44] proposed a
graph-based MAE, emphasizing pre-training with skeleton
sequences. Generative learning techniques such as LongT
GAN [48] and P&C [39] emphasized encoder-decoder ar-
chitectures to refine skeleton sequence representation.

Despite advances, self-supervised learning in hand ges-
ture recognition, especially online, remains underexplored.
Chen et al. [8] focused on 3D hand reconstruction, Sign-
BERT [23] pre-trained hand-aware representations for sign
language, while [24] pre-trained a MAE to encode separate
individual hand poses without considering temporal corre-
lation. Our work extends self-supervised skeleton learn-
ing to improve online gesture recognition, by incorporating
spatio-temporal encoding and relying on prior knowledge
and anatomical constraints to inform the learning process.

3. Methodology
We propose a comprehensive end-to-end framework for on-
line hand gesture recognition, which is divided into two
main phases. First, a spatio-temporal MAE (STMAE) is
pre-trained to encode a sequence of skeletal hand gesture
frames into a robust feature representation. Subsequently,



Figure 2. (A) Proposed AG-MAE: a ratio of joints are masked in a given window, the unmasked joints are encoded by the encoder and
then concatenated with the mask tokens and passed through the decoder to reconstruct the masked joints. (B) Masking strategies.

a spatio-temporal graph convolutional network (STGCN) is
fine-tuned to classify gestures within a real-time data stream
using the learned representations. Figure 2-A illustrates
the architecture of our proposed bio-mechanically guided
spatio-temporal masked autoencoder (AG-MAE).

3.1. Pretraining

In pre-training, given an input window of hand poses X ∈
RW×N×3, where W is the number of frames, N is the
number of hand joints, and 3 corresponds to the 3D coor-
dinates (x, y, z), we first project the 3D joint coordinates
into a higher-dimensional space Rd using a Fourier embed-
ding map, while incorporating positional encoding to main-
tain spatial and temporal order. A ratio mr (mask ratio) of
joints is masked according to one of the strategies in Fig-
ure 2-B. Each joint is represented as a token of dimension
d in the Fourier embedding space. The unmasked joints are
processed by a ViT-based MAE encoder, mapping them to
a latent space Rl. The encoded unmasked joints are con-
catenated with the mask tokens and fed to the ViT-based
MAE decoder to reconstruct the masked joint coordinates,
producing X̃ ∈ RW×N×3. Reconstruction quality is evalu-
ated using the mean squared error, along with the anatom-
ical loss, which assesses the anatomical correctness of the
reconstructed hand poses. This process enhances the en-
coding of hand poses window into a more discriminative
feature space, enhancing their utility for subsequent tasks
such as gesture spotting and classification.

Fourier Embedding. Fourier Feature Embedding (FFE)
improves the ability of the model to capture spatial and tem-
poral relationships between hand joints. It projects spatial
and temporal coordinates into a high-frequency domain us-
ing sine and cosine functions of varying frequencies. This
technique allows the model to discern nuanced patterns
in 3D keypoint motions [40]. Unlike linear embeddings,
which may overlook fine details, FFE preprocesses the in-
put to capture higher-frequency details and intricate spa-
tial dependencies, leading to more accurate representations
[24, 40]. The FFE embeds the 3D coordinates v(x, y, z)
into a 256-dimensional space:

γ(v) = [a1 cos(2πb
T
1 v), a1 sin(2πb

T
1 v),

. . . , . . . ,

am cos(2πbTmv), am sin(2πbTmv)]T
(1)

where b are the Fourier basis frequencies, and a are the cor-
responding Fourier series coefficients, resulting in a feature
transformation with m distinct frequency components.

Positional Encoding. Positional encoding aims to pre-
serve both spatial and temporal dimensions within the data.
Specifically, a spatial positional encoding is added to each
joint and maintained across all frames to retain the spatial
structure. Additionally, a temporal positional encoding is
applied to each frame, with the same encoding assigned
to all joints within a frame to ensure temporal consistency.
These encodings enable the model to effectively track and
correlate spatial and temporal relationships.



Figure 3. Hand anatomy constrains the biomechanics of hand mo-
tions, including joint angles (θ) and bone lengths (l).

Masking Strategy. Different masking strategies, illus-
trated in Figure 2-B, are employed to enhance the self-
supervised learning model for characterizing hand poses.

• Random spatial masking: is a joint-level masking strategy
that involves masking a given ratio of the same joints over
time, i.e. the same set of random joints is masked in each
frame of the sequence.

• Random temporal masking: is a frame-level masking
strategy that involves masking a random number of
frames in the sequences, i.e. all joints of the hand are
masked in a given random set of frames.

• Random spatio-temporal masking: is a widely adopted
and highly effective strategy in image- and skeleton-
based self-supervised learning [22, 44] involving ran-
domly masking a number of joints at both the frame- and
joint-level in the sequence.

3.2. Anatomical Constraints

The hand is anatomically constrained by biomechanical
limitations [11], allowing it to perform certain poses while
limiting its ROM. Each joint has a specific degree of free-
dom (DoF) that defines its movement capabilities. For ex-
ample, the index, middle, ring, and little fingers are consid-
ered planar manipulators, meaning that their DIP, PIP, and
MCP joints move primarily in one plane since the DIP and
PIP joints only have 1 DoF for flexion (see Figure 3). The
anatomical constraints can be categorized into two primary
categories: dynamic and static constraints.

Dynamic constraints can be subdivided into intrafinger
and interfinger constraints. Intrafinger constraints refer to
limitations on movement between different joints within the
same finger [13]. For instance, Cobos et al. [11] outlined
several constraints, such as the requirement that to bend the
DIP joints, the PIP joints must also be bent for the index,
middle, ring, and little fingers, mathematically expressed as
θDIP = 2

3θPIP . While these constraints are not rigid, indi-
viduals generally adhere to them under normal conditions,

though there is some variation in the ability to control spe-
cific joints across individuals.

Interfinger constraints involve correlations between
joints across different fingers, often resulting in coupled
movements among fingers [30]. For example, when the
pinky finger bends, the ring finger also bends to a certain ex-
tent, reflecting a proportional relationship. However, vari-
ations exist among individuals regarding these constraints.
Some constraints can be overcome, while others are inher-
ent and cannot be explicitly represented in equations [38].

Static constraints define the normal ROM for hand
joints, setting limits on parameter values in models. These
constraints [11], provide crucial guidelines for understand-
ing and modeling hand biomechanics. Despite individual
variations, static constraints play a significant role in defin-
ing the anatomical capabilities of the hand. The limits for
each constraint can be obtained manually from measure-
ments, from the literature (e.g., [10, 35]), or acquired in a
data-driven way from 3D annotations. Two main constraints
are commonly considered [11], as illustrated in Figure 3:
bone lengths, reflecting intra-finger constraints, and joint
angles, covering both intra- and inter-finger constraints.

For bone lengths, we define an interval [bmin
i , bmax

i ] for
each bone i and penalize deviations if the length ∥bi∥2,
which corresponds to the Euclidean distance between the
extremities of the bone at the joints, lies outside this inter-
val. Mathematically, given a hand pose P , we define the
bone length loss as:

LBL(P ) =
1

Nb

Nb∑
i=1

I(∥bi∥2; bmin
i , bmax

i ) (2)

where Nb is the number of bones, and I(∥bi∥2; bmin
i , bmax

i )
is an indicator function that penalizes the bone length ∥bi∥2
if it falls outside the defined interval [bmin

i , bmax
i ].

For joint angles, each joint has its specific range of free-
dom. For instance, as cited by Cobos et al. [11]:

0◦ ≤ θMCP ≤ 90◦; 0◦≤ θPIP ≤ 110◦; 0◦ ≤ θDIP ≤ 90◦.

We propose to compute the ranges of angles for each joint
based on the data. To compute the joint angles, we first need
to define a reference point relative to which the angles are
measured. The wrist joint appears to be the most suitable
as it has 0 DoF in the hand plane, and its movements are
minimal or almost negligible.

To constrain the angles, we consider each angle indepen-
dently (e.g., θ1 between the Index MCP and Middle MCP
in Figure 3) and penalize them if they lie outside the cor-
responding interval. This corresponds to constraining them
within a box in a 2D space, where the endpoints are the
min/max limits. The angles are constrained to lie within this
structure by minimizing their distance to it. For angles, we
consider the angles between all pairs of joints in the hand,



even those within the same hand, leading to the following
definition of the loss with regards to angles:

LJA(P ) =
2

N(N − 1)

N∑
i=2

N∑
j=i+1

I(∠(
−−→
JwJi,

−−−→
JwJj); a

min
ij , a

max
ij ),

(3)
where ∠(

−−→
JwJi,

−−−→
JwJj) is the angle between joint i and joint

j considering the wrist joint (Jw) as the vertex, amin
ij ∈

Amin and amax
ij ∈ Amax are the minimum and maximum

angle values between joint i and j. The number of pairs
(Jw, Ji) and (Jw, Jj) where i and j are distinct joints in-
dices is given by the binomial coefficient:

(
N
2

)
= N(N−1)

2 .
Given the potential for error and inaccuracy in annotated

hand gesture datasets, the lack of a common hand kinemat-
ical model across dataset and the lack of explicit equations
for some dynamic angles, we propose to rely primarily on
static constraints. These constraints offer a more accessible
and straightforward approach to defining ROMs for individ-
ual joints and the hand as a whole. The ROM is character-
ized by its minimum and maximum values, determined by
the angles between the various joints, with the wrist joint
serving as the reference point, as well as by considerations
of the distances between these joints. We argue that con-
sidering the angles between all pairs of joints in the hand
provides the model with a rich feedback on the anatomical
correctness of the hand.

Integrating these constraints into the loss function en-
courages keypoint predictions that yield valid bone lengths
and valid angles, thus ensuring accurate hand anatomy. The
anatomical loss can be formulated as:

LA(P ) = LBL(P ) + LJA(P ) (4)

where LBL and LJA denote the bone length and joint angle
losses, respectively.

3.3. Model Architecture

The AG-MAE model is designed to process temporal hand
skeleton data. It is based on an asymmetric encoder-decoder
architecture, both built upon the ViT model [41].

Encoder. The encoder is built to encode a given window
of Fourier embedded hand non-masked tokens XF

nmask =
γ(X) ∈ RNnmask×256, where Xnmask ∈ RNnmask×3 is the
window of hand poses and Nnmask is the number of non-
masked joints across the window, into a latent space Xenc ∈
RNnmask×dl , where dl is the latent space dimension.

The MAE encoder is implemented based on a ViT model
with a depth of 6, featuring attention mechanisms in each
layer. This architecture utilizes 8 heads for multi-head at-
tention and incorporates feed-forward networks with a di-
mension of 512. The embedding dimension is set to 256,
encoding each 3D hand joint coordinate into a 256-element
vector (dl = 256).

Decoder. The MAE decoder is designed to complement
the encoder. It receives a complete set of tokens, which
includes encoded visible patches and mask tokens (see to
Figure 2). Mask tokens are shared, learned vectors that de-
note the presence of a missing patch that needs to be pre-
dicted. To ensure that mask tokens have location informa-
tion, spatial and temporal positional embeddings are added
to all tokens in this set. Subsequently, the decoder attends
to this combined sets of tokens using attention mechanism
and predicts the coordinates of the missing joints.

The MAE decoder is utilized exclusively during pre-
training for the purpose of skeleton reconstruction, with
only the encoder being employed to generate hand poses
representations for downstream tasks.

Loss. During pre-training, the reconstruction loss com-
prises the Mean Squared Error (MSE) loss alongside the
anatomical loss, represented by the ROM constraints for
each joint and finger calculated given the training data. The
total loss, denoted as L, is expressed as L = LMSE +λLA.
Here, LMSE = E

[
||X − X̂||2

]
, and LA signifies the

anatomical loss, and λ denotes a weighting factor.
Minimizing this loss enables the MAE model to refine its

predictions, striving to closely match the ground-truth co-
ordinates while respecting anatomical correctness of hand
skeleton. This iterative process facilitates the learning of
discriminative representations across different hand poses
within the latent space.

3.4. Fine-Tuning for Dynamic Recognition

To evaluate the effectiveness of our AG-MAE model
in learning discriminative hand pose representations, we
employ the spatio-temporal graph convolutional network
(STGCN) [45] as the backbone architecture for classifying
skeleton sequences. The STGCN excels at capturing tempo-
ral relationships, allowing it to extract complex patterns in
sequential data. Additionally, it uses an edge-attention adja-
cency matrix constructed with a learnable mask, enhancing
its ability to capture spatial dependencies.

Online Recognition. We implement a sliding-window-
based model to identify the boundaries of gestures (start
and end) and the gesture performed within the window of
frames. The start and end are defined as the transitions be-
tween gesture classes and the non-gesture class.

The online model is based on an STGCN architecture
and incorporates a classification head to predict the gesture
(including the non-gesture class) within the window. Fol-
lowing [12], two regression heads are integrated: one for
identifying the start and another for identifying the end of
any detected gesture.



A cross-entropy loss is applied to the gesture class out-
put, and an MSE loss is applied to the two regression out-
puts (start and end of the gesture, if any).

Offline Recognition. The offline model, on the other
hand, is trained on segmented, isolated gestures. We use an
STGCN model with a single classification head to output a
gesture label for each segmented sequence. All sequences
are padded to the dataset maximum length for uniform pro-
cessing, and training is conducted using cross-entropy loss.

For both online and offline settings, given a 3D hand
joint sequence, we utilize the pre-trained MAE encoder
to extract the corresponding learned representations (la-
tent space), which serve as the foundation for training the
STGCN models. No masking is applied during finetuning.

4. Experimental Setup

4.1. Evaluation Protocols and Metrics

Unlike offline evaluation, which focuses mainly on recog-
nition accuracy, online evaluation relies on more in-depth
metrics to assess performance in real time, including:

Detection Rate (DR) measures the ratio of correctly de-
tected gestures to the total number of gestures, consider-
ing temporal overlap with ground truth and duration consis-
tency. A gesture is correctly detected if its temporal overlap
exceeds 50% of the true interval, does not exceed twice the
actual duration, and matches the label.

Levenshtein Accuracy (LA) captures recognition accu-
racy regardless of early or late detection. It’s also known as
minimum edit distance, meaning it measures the minimum
number of single-label insertions, deletions, and substitu-
tions needed to transform a set of labels into another.

Jaccard Index (JI) refers to the average relative over-
lap between ground truth and predicted labels, providing
insights into the alignment of detected gestures with the
ground truth gestures.

False Positive rate (FP) quantifies the ratio of false pos-
itive predictions to the total number of gestures, highlight-
ing the ability of the model to minimize erroneous detec-
tions. Minimal false positives are desirable for robust ges-
ture recognition systems.

Inference Time (IT) denotes the duration required for
the model to perform inference and label a single frame,
crucial for assessing real-time applicability.

Normalized Time to Detect (TNtD) quantifies the frac-
tion of the sequence duration, from start to end, before
the system successfully detects the gesture. Normalization
aids in comparing detection performance across different
sequence lengths.

4.2. Datasets

The key characteristics of the datasets used for online eval-
uation are given in Table 1.

Dataset #S #G #J #G/S MeanT StdT

SHREC21 [6] 180 17 20 3-5 77 61
IPN Hand [4] 4000 14 21 21 140 94
ODHG [14] 280 14 22 10 58 27

Table 1. Statistics for evaluation datasets: S (sequences), G (ges-
tures), J (joints), G/S (continuous gestures per sequence), MeanT
(average gesture duration), StdT (standard deviation).

SHREC’21: The SHREC’2021 Track dataset [6] meets
to practical application scenarios requiring real-time gesture
recognition within continuous hand movement sequences.
It includes 18 gesture classes categorized as static, coarse
dynamic, and fine dynamic gestures. Evaluation metrics in-
clude DR, FP rate, JI and IT.

IPN Hand: The IPN Hand dataset [4] comprises over
4,000 gesture instances from 50 subjects. Each subject ex-
ecuted 21 gestures continuously, interspersed with random
pauses, in a single video We use the provided training/test
split for evaluation. Evaluation is based on LA and IT.

ODHG: Online Dynamic Hand Gesture (ODHG) [43]
is the online version of the SHREC’17 track [14], provid-
ing 280 sequences of 10 non-segmented gestures occurring
sequentially and performed by 28 subjects in a continuous
online environment. Evaluation is based on LA and TNtD.

Due to the variability in hand models across datasets,
particularly regarding the number of joints, we propose
a dataset-specific approach for inferring anatomical con-
straints. Specifically, we derive the ranges for these con-
straints, namely the minimum and maximum values for
bone lengths and joint angles, based on the training set.

4.3. Implementation Details

For the STMAE model, key hyperparameters include learn-
ing rates. We employed the AdamW optimizer with a learn-
ing rate of 2 × 10−4 and weight decay of 5 × 10−2. The
learning rate is gradually reduced during training, with the
biomechanical loss weighting factor (λ) set to 1.0. The win-
dow size is set to W = 16. Similarly, for both STGCN
models, we utilized the AdamW optimizer with a learning
rate of 1×10−3 and weight decay of 5×10−2. The learning
rate undergoes gradual reduction throughout training. We
employed cross-entropy for training loss with label smooth-
ing during fine-tuning, with a smoothing rate of 0.1. We use
a sliding window W = 16 as we found it to be an optimal
choice. All experiments are conducted using an NVIDIA
GeForce RTX 2080 GPU.



Figure 4. Left: example of an anatomically correct generated hand pose. Middle: example of a non-anatomically correct generated hand
pose (thumb tip is extended beyond the normal range). Right: minimum and maximum bone lengths in the IPN Hand dataset.

5. Experimental Results

5.1. Ablation Studies

We conduct ablation studies to assess the effectiveness of
various components and enhancements in our method. All
experiments are conducted using the SHREC’21 dataset.

Masking Strategy. Our analysis of different masking
strategies provides valuable insights (Table 2). Random
spatio-temporal masking with a ratio of 0.6 (mr = 60%)
proves to be the most effective, achieving 91.9% DR and
a minimum FP rate of 0.033, highlighting its effectiveness
for classification tasks. In contrast, random spatial mask-
ing achieves the highest JI with a ratio of 0.7, highlight-
ing its strength in detection tasks. However, the random
temporal masking shows comparatively lower performance,
which can be attributed to its limited effectiveness in online
gesture recognition. This reduced performance is likely due
to the disruption of critical sequential patterns and tempo-
ral context that are essential for accurate real-time gesture
recognition. In particular, the random nature of temporal
masking can lead to masking of contiguous frames with-
out intermediate information, disrupting the temporal flow.
We argue that a guided temporal masking approach, such
as one informed by joint motion, may be more effective as
it reduces randomness and ensures that masking does not
obscure important sequential information.

Masking strategy Ratio DR ↑ FP ↓ JI ↑

Random spatial
0.5 90.3% 0.0490 0.6346
0.6 87.1% 0.0414 0.6228
0.7 90.5% 0.0626 0.7257

Random temporal
0.5 74.5% 0.5331 0.5024
0.6 80.8% 0.0516 0.5707
0.7 81.6% 0.0753 0.5380

Random spatio-temporal
0.5 88.3% 0.0694 0.5568
0.6 91.9% 0.0330 0.6800
0.7 88.3% 0.0406 0.6412

Table 2. Ablation study on masking strategy and ratio in pre-
training phase (SHREC’21).

Feature Embedding. We compare FFE against learned
linear mapping using a fully connected layer (Table 3 -
Line 1). Our experiments show that FFE significantly out-
performs linear mapping. This enhancement is due to the
ability of FFE to capture intricate spatial and temporal rela-
tionships among joints in skeletal data. By projecting input
coordinates into a high-frequency domain, FFE allows the
network to encode finer details, thereby improving the qual-
ity of learned representations.

Anatomical Loss. The inclusion of anatomical con-
straints significantly improves model performance, as evi-
denced by improvements in all evaluation metrics (Table 3
- Line 2). The anatomical loss provides critical anatomical
feedback during the pre-training phase that improves model
robustness without impacting inference time. This loss term
helps generate anatomically correct hand poses, reducing
misinterpretation of joint positions that could lead to confu-
sion between gestures, especially in non-gesture frames that
involve random hand movements.

Figure 4 illustrates the differences between correct and
incorrect hand poses; the latter is shown with an exagger-
ated thumb extension, which is effectively penalized by the
anatomical loss. In addition, the anatomical constraints
adapt to different hand shapes and sizes by defining bound-
ing ranges for bone lengths and joint angles.

Method DR ↑ FP ↓ JI ↑ IT (ms) ↓

AG-MAE w/o FE 83.1% 0.082 0.573 0.41
AG-MAE w/o LA 84.4% 0.065 0.571 0.63

AG-MAE 91.9% 0.033 0.680 0.63

Table 3. Ablation studies on different components of AG-MAE
model (SHREC’21).

5.2. Comparison with State-of-the-Art Methods

Offline Evaluation. We first assess our approach in an of-
fline setting, focusing on segmented hand gesture sequences
from three distinct datasets: SHREC’21, IPN Hand, and
ODHG. The results, as detailed in Table 4, particularly em-
phasizing the critical role of self-supervised learning and
pretraining in learning spatio-temporal representations of



Method Accuracy

DDNet [46] 87.8%
Stronger [16] 97.5%

AG-MAE 98.5%

SHREC’21 Dataset.

Method Accuracy

ResNeXt-101 [4] 86.3%
Dist-Time [18] 87.5%

AG-MAE 93.7%

IPN Hand Dataset.

Method Accuracy

G Spotter[36] 95.3%
DSTA-Net [37] 97.0%

AG-MAE 93.6%

ODHG Dataset.

Table 4. Offline results on evaluation datasets.

hand skeleton data. Notably, our model achieves SOTA per-
formance on the SHREC’21 and IPN Hand datasets.

Online Evaluation. For online evaluation, we adhere
to the proposed evaluation protocol and metrics for each
dataset. Table 5 shows the comparative performance of dif-
ferent methods on the SHREC’21 dataset. Our approach
achieves SOTA results in terms of DR and FP rate. No-
tably, while group 4 of the original SHREC’21 paper also
uses the STGCN backbone, our model, augmented with a
masked autoencoder (MAE) for better representation learn-
ing, achieves an improved recognition rate of 91.9% with a
notable reduction in false positives to 0.033.

However, we observe a notable decrease in the JI com-
pared to the STGCN-based method from Group 4 (G4)
of the SHREC’21 paper. This difference may stem from
Group 4’s use of two separate models—one for detection
and one for classification—as well as their incorporation of
handcrafted similarity evaluations. Such handcrafted fea-
tures can be highly effective for specific gestures, contribut-
ing to their higher JI scores [6].

Method Backbone DR ↑ FP ↓ JI ↑ IT(ms) ↓

G1 [Shrec21] [6] Transformer 79.2% 0.257 0.603 1.36
G2 [Shrec21] [6] CNN 48.6% 0.927 0.277 0.41
G3 [Shrec21] [6] GRU 75.7% 0.340 0.619 3e-6
G4 [Shrec21] [6] STGCN 89.9% 0.066 0.853 0.16
Stronger [16] CNN 90.6% 0.347 0.740 0.10
G Spotter [36] LSTM 90.3% 0.053 0.852 -
AG-MAE STGCN 91.9% 0.033 0.680 0.63

Table 5. Online recognition results on SHREC’21 dataset.

Method Modality LA ↑ IT (ms) ↓

ResNet50 [4] RGB-Seg 33.27% 29.2
ResNet50 [4] RGB-Flow 39.47% 43.1
ResNeXt-101 [4] RGB-Seg 39.01% 39.9
ResNeXt-101 [4] RGB-Flow 42.47% 53.7
TMMF [19] RGB-Flow 68.12% -
TSN-TSM [5] RGB-Seg 65.27% 15.2

AG-MAE 3D keypoints 73.93% 19.4∗

Table 6. Online evaluation on the IPN Hand dataset. (*) indicates
that IT includes both keypoint extraction and inference times.

Table 6 demonstrates SOTA results of our model in terms
of LA. Despite the relatively high reported inference time,
it is important to note that this includes the additional time
required for the extraction of 21 3D keypoints using Medi-
aPipe [47]. Specifically, the 3D keypoints extraction con-

tributes approximately 19.33 ms to the overall inference
time, while the inference time of our model alone is on the
order of 10−1ms. This suggests that the observed inference
time is primarily influenced by the keypoints extraction pro-
cess rather than the model itself.

For the ODHG dataset, due to the lack of a standard eval-
uation split protocol, we follow the authors approach and
employ a random k-fold split, allocating 70% of the data
for training and 30% for testing. Our model achieves an LA
of 82.0% and an NTtD of 0.34. The original paper reported
comparable results, with an LA of 82.2% and an NTtD of
0.21 using depth images.

Limitations. Despite the notable performance of our
method, some limitations should be acknowledged. A key
limitation is the trade-off between DR, FP rate, and JI de-
pending on the masking strategy and ratio employed (see
Table 2). This trade-off indicates that the optimal masking
strategy and ratio may depend on the specific application re-
quirements, highlighting the need for a balanced approach
to achieve the best overall performance. Additionally, inte-
grating the MAE with the STGCN backbone increases com-
putational complexity, resulting in longer inference times.
This may constrain the practical deployment of the model
in real-time scenarios where processing speed is crucial.

6. Conclusion and Future Work

In this work, we introduce a novel framework for online
hand gesture recognition combining self-supervised learn-
ing with anatomical constraints. By pre-training a spatio-
temporal masked autoencoder with anatomical guidance,
our approach transforms 3D hand keypoints into highly
discriminative representations, enhancing performance in
online gestire recognition. Comprehensive evaluations on
SHREC’21, IPN Hand, and ODHG datasets shows that our
method achieves SOTA results.

Future research will focus on refining adaptive masking
strategies to further improve overall performance in online
scenarios. Additionally, we will work on reducing model
complexity to develop faster, more efficient models for de-
ployment in resource-constrained environments.
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