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Abstract—Air pollution is among the major threats to human
well-being, highlighting the critical need for air quality monitor-
ing, especially in urban areas. Whereas the development of low-
cost pollution sensors has facilitated a widespread monitoring,
a reliable anomaly detection system is required to properly
characterize data for the end-users. In this paper, we propose
an enhanced deep learning approach based on the A3T-GCN
(Attention Temporal Graph Convolutional Network) model that
accurately forecasts particulate matter PM: 5 concentrations us-
ing real past measurements from a deployed sensor network. Our
proposed Enhanced-A3T-GCN embeds all the available spatial
and temporal correlations within the sensor network, along
with additional information regarding the sensor environment
in a graph. It is shown to achieve significant performance
improvement with respect to other deep learning forecasting
methods, emphasizing the importance of exploiting the sensor
environment-based information. Further, the achieved accurate
forecasting makes it possible to detect anomalies injected at both
single and multiple sensor levels.

Index Terms—Pollutant forecasting, Graph neural network,
A3T-GCN, Anomaly detection.

I. INTRODUCTION

Air pollution induces serious effects on human health world-
wide. In particular, exposure to particulate matter (PM), is
associated with worsening of respiratory and cardiovascular
diseases that can lead to premature death. For this reason,
monitoring pollutant concentrations is of prime importance.
In recent years, the development of low-cost pollution sensors
has completed the air quality monitoring strategy in order to
enhance the spatial coverage. Their cost, size and ease of use
enable to deploy large networks [1]-[3]. This new approach
generates large sets of data for which characterization methods
are indispensable. A reliable anomaly detection system is
particularly needed to set up information and warning for the
population and to trigger appropriate measures to reduce air
pollution when needed.

More specifically, anomaly detection consists in identifying
data that deviate from their expected behavior [4], [5]. In
a pollution sensor network, the main sources of anomalies
include:

(1) an unusual event leading to a significant increase in the
pollutant concentration, e.g. fire, waste incineration, specific
weather conditions [6], [7]. In this case, the data should

be tagged and examined more thoroughly to discover the
underlying event [5];

(2) a malfunction or failure of a low-cost sensor and/or the
wireless communication system, more likely to lead to data
erasure or erroneous data. In this case, noises or time drifts
should be eliminated to improve the data quality and missing
values should be filled.

A pollution sensor network provides air quality data in the
form of several multivariate discrete-time time series. To take
advantage of the temporal correlation, many anomaly detection
approaches are based on time series forecasting. Then any
observed value is considered as an anomaly if the distance
between this value and the predicted value is higher than a
predefined threshold. Time series models used for forecasting
include autoregressive models [2], [8], e.g. Auto Regressive
Integrated Moving Average (ARIMA), decomposition models,
e.g. three components (trend, seasonality and holidays) in
Facebook Prophet [9], and more recently deep learning models
based on LSTM (Long Short Term Memory) or GRU (Gated
Recurrent Unit) architectures specialized for processing time-
sequential data [10]. The latter models have shown significant
progress in multivariate time series forecasting, but they only
focus on the temporal correlation. Nevertheless, the multiple
time series from a sensor network are also spatially correlated.
One promising solution for capturing the spatial correlation
inherent to a sensor network is to add a GCN (Graph Con-
volution Network) [10]-[13], which is more general than the
well-known CNN (Convolutional Neural Network) restricted
to grid-type data structures, such as images.

In this context, one of the most advanced methods is A3T-
GCN (Attention Temporal Graph Convolutional Network),
originally proposed for traffic forecasting [14], that was then
shown to outperform other baseline methods in several fore-
casting contexts [15], [16]. This method combines GCN to
capture spatial dependencies, GRU to learn temporal depen-
dencies, and introduces an attention mechanism to ensure a
focus on the most relevant parts of the time series. To take
full advantage of A3T-GCN, it needs to be fed with a graph
embedding all the available spatio-temporal correlation within
the considered sensor network. Exploiting graph theory, the
latter is obtained as an adjacency matrix whose entries quantify



the similarity between each pair of sensors. Recently, in the
context of air quality prediction [16] and anomaly detection
in air quality data [12], this adjacency matrix was built from
spatial distances between sensor locations and from temporal
correlation between the time series provided by sensors.

In this paper, the objective is to enhance the A3T-GCN
deep learning approach by enriching the spatio-temporal in-
formation supplied as input by exploiting features describing
the environment in which the deployed sensors are installed,
such as street width, height of nearby buildings, presence
of trees... Indeed, the environment has a strong impact on
the pollution sensor responses because atmospheric turbu-
lences, caused by physical obstructions such as buildings and
trees, are among the key factors influencing the dispersion
of pollutants in the air. At a city scale, closely deployed
sensors in contrasted street configurations can provide pol-
lutant concentrations which are much less correlated than
their proximity would suggest. On the other hand, sensors
in similar streets can show a higher level of interdependence
despite a greater distance. Thus, a novel adjacency matrix is
defined from distances between sensors in the environment
feature space such that its entries quantify the degree of
similarity between sensor environments. It is then combined
with the common adjacency matrix described previously to
construct an enhanced spatio-temporal graph. As such, our
main contributions are summarized as follows:

i) We first propose a novel graph construction, combining
both spatial and temporal correlations across the deployed
sensor network as well as additional information based on the
environment of the deployed sensors.

ii) This graph is then fed to the A3T-GCN, which is referred
to as Enhanced-A3T-GCN in the remaining. The forecasting
accuracy of our proposed Enhanced-A3T-GCN is compared
to the one of several other deep learning based forecasting
approaches from the literature. Numerical results show that
on our dataset, the Enhanced-A3T-GCN performs better.

iii) Finally, we investigate the ability of our Enhanced-A3T-
GCN approach to detect anomalies. To this end, simulated
anomalies are injected at a local level, i.e. at a sensor level,
and at a global level, i.e. at multiple sensor level.

II. PROPOSED ENHANCED-A3T-GCN

Let us consider a network, deployed at a city scale, of
N sensors measuring air pollutant concentrations. Because of
climatic conditions within the area of interest, as well as due
to pollution sources near and in the city, the measurements
exhibit some spatial and temporal dependencies that need
to be captured to better and accurately predict the pollution
levels. In the remaining, prediction is done by exploiting A3T-
GCN, a network able of learning spatio-temporal dependencies
between sensors and that takes as input a graph embedding
the aforementioned spatio-temporal information. The output
of this network is the forecasted future pollutant levels. If the
predicted value is too far away from the true measurement,
i.e. the absolute prediction error is greater than a threshold, an
anomaly is detected.

Our main contribution consists in a new graph construction
given as the input of the A3T-GCN that takes advantage of the
spatio-temporal available information coming from both the
pollution measurements themselves, as well as from the sensor
positions and environments. The main steps of our proposed
anomaly detection scheme are highlighted in Fig.1.

A. Proposed enhanced spatio-temporal graph construction

The sensor network can be represented as a complete
weighted graph G = (V, E), where V is the set of vertices
(also called nodes) and F is the set of edges connecting each
pair of vertices. In this graph, each vertex v; represents the
i-th sensor in the deployed sensor network, and the edge
between two vertices v; and v; is weighted by w;; > 0 which
quantifies the similarity or proximity between sensors ¢ and
j. In the usual graph terminology, the matrix € RNs*Ns
collecting all weighting parameters {ws;}; jeq1,n.]x[1,n,] aS
Q(i,j) = wij; is referred to as the adjacency matrix of the
graph. €2 can be defined in several ways, e.g. from distances
between the position of the deployed sensors or from the
temporal correlation between the time series delivered by the
sensors [14]-[16].

We here propose to also exploit the similarity within the
sensor environment itself to build a new adjacency matrix,
that relies on:

1) 11 qualitative variables that describe the urban environment
of each sensor and that encompass information such as the type
of area (e.g. downtown, residential area), the road geometry
(e.g. straight road, roundabout), the urban morphology (e.g.
street canyons), the way the sensor is deployed (e.g. near a
tree, on a wall), etc. All this information can be gathered when
deploying the sensor network. The studied sensor network was
deployed by the private French company Groupe TERA and
for confidentiality purposes, all the qualitative variables, as
well as the values they can take, are not exhaustively presented
in this paper.

ii) 5 public auxiliary variables that describe the pollution-
related environment of each sensor. We here consider the
traffic density! in 2020, the annual mean Nitrogen Dioxide
(NOs) concentration at the sensor location in 2017 given by a
model from Atmosud, the French southern region air quality
observatory, approved by the Ministry of Environment, and
the PMy 5 spatial emission inventory?> on a larger scale for
2018 also provided by AtmoSud. All these variables are used
to construct a new adjacency matrix.

Sensor environment-based adjacency matrix Q5 F™: For
each sensor pair (7, ),4,j € [1, Ng|x[1, Ny], we first compute
their distance, denoted as d%ﬂ Env. in the above mentioned 16-
dimensional feature space. We then apply a Gaussian radial
basis function and the entry wf]i Env. of the adjacency matrix is
given as

wZSj Env. _ exp(_(d% Env.)2/(0_S. Env.)2)’ (1)

Uhttps://data.ampmetropole fr/explore/dataset/comptage-routier-base-
routiere-metropole-2020/information/
Zhttps://opendata.atmosud.org/viewer.php?categorie=modelisation
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where o is the sample standard deviation of the distance
set {d3; "™} jeq1,Na)x(1,n,)- In this way Q5 ™ embeds the
sensor environment similarity.

In our proposed approach, we also exploit some previously
proposed spatio-temporal adjacency matrices [12], [14]-[16].
Spatial correlation-based adjacency matrix QSpatial, \ye fol-
low a similar approach as above but consider the geodesic
distance between all geolocated sensor pairs (i, j), denoted as
43P Hence, the weighting parameter is given as

ij
exp(— (dSPﬂtiﬂl)Q / (USpatial ) 2 ),

Spatial __
= i

ij

2
where ¢SP4 is the sample standard deviation of the distance
Spatial

set {d;; }i e, N x[1,N,]-

Temporal correlation-based adjacency matrix X7"P°!; We
exploit the temporal correlation among the concentrations
measured by sensors ¢ and j across time that are denoted
as x;(t) and x;(t) respectively. We further denote by Z; and
T; their empirical temporal average. As such, the weighting
parameter writes as

romport _ 30 (@4(8) — T (25(t) — 75)

Y V2 (@i(t) =702 X, (25(t) — 75)?
Proposed combined adjacency matrix Q°P: Finally, we
propose to blend the three aforementioned adjacency matrices
into a new one obtained as the product of the three, defined as
QFror: — S Env-Spatial oy Temporal © Ajthough some values can
be very close to zero, we do not apply any sparsification to
avoid the tuning of the related threshold.

3)

B. Forecasting approach

We here propose to predict air pollutant concentrations
with the help of the A3T-GCN [14] model that is fed with
our proposed enhanced graph accounting for the joint spatio-
temporal information alongside with the sensor environment
based information, as well as with a past time sequence of the
air pollution measurements within the sensor network. This
model exploits three key components, namely GRU, GCN
and an attention mechanism, where the GRU and attention
mechanism handle the temporal dimension (consideration of
the temporal correlation and focus on the most relevant parts
of the time series), whereas the GCN captures the spatial
correlation. For a more detailed presentation of A3T-GCN,
we kindly refer the interested reader to [14].

C. Anomaly detection

To detect an anomaly, we compute the Mahalanobis dis-
tance between the pollution concentration forecasted by the
aforementioned Enhanced-A3T-GCN model to the true one
measured by the sensor network, which is referred to as
Prediction error in Fig. 1. The latter is then compared to a
predetermined threshold and if above, an anomaly is detected.
Note that we here exploit the Mahalanobis distance given its
good performance in anomaly detection [17].

ITI. NUMERICAL RESULTS
A. Dataset construction and pre-processing

We consider real data provided by a sensor network recently
deployed in an urban area near Aix-en-Provence and composed
of N, = 100 NextPM® sensors designed by the company
Groupe TERA for PM pollution monitoring. Each sensor
delivers PMj 5 concentration measurements every 15 minutes.

In order to work with a reasonably-sized dataset, we select
a limited number of sensors from all the sensors in the
network while considering various sensor environments. To
this end, we first identify the main categories of environments
by performing sensor clustering via the k-means algorithm
using the above computed distances within the 16-dimensional
feature space. The optimal number of clusters, obtained thanks
to the elbow method, was found to be 7. Then to ensure
data representativeness, we select N = 24 sensors out of the
N, = 100 sensors within the deployed network such that each
cluster, i.e. each major category of environment, is represented
by at least 2 (and up to 5) sensors. Finally, the used dataset
contains 9464 PMs 5 concentrations measured between June,
10th and Sept., 26th 2023 for each of the N = 24 sensors.

Due to the presence of imperfections and unknown anoma-
lies in these real measurements, pre-processing steps are
performed for a proper model evaluation:

1) We exclude all observations that deviate significantly from
the empirical average by considering the well-known 3o
criterion. Indeed, these outlier values are not relevant to assess
the forecasting performance.

ii) We fill in all missing values, that correspond to values that
were either removed in the previous step or not measured or

3https://tera-sensor.com/fr/categorie-produit/capteurs-oem/



not transmitted by the sensor network. To do so, we use a
linear interpolation method.

B. Forecasting performance

In simulations, we use 80% of the PMs 5 measurements,
ie. N, = 7571 samples, for training and the remaining
20%, i.e. Ny = 1893 samples, for testing. To preserve the
temporal correlation of the time series, the order of samples
is maintained and the test set is placed just after the training
set. Moreover prior to this choice of splitting, we checked the
stationarity of the time series over the whole considered period
via the Dickey-Fuller test. In the remaining, we focus on the
forecasting performance in terms of root mean square error
(RMSE) and mean absolute error (MAE), given as

1L |1 X PR
RMSE = ; N, ;(:ci(t) — &;(t))?, 4
1 XL X
MAE = N 2 Ff tz:; |5 (t) — &4(t)]. o)

First, we compare the performance obtained with our pro-
posed Enhanced-A3T-GCN to the one obtained with LSTM,
GRU and GCN single models. All these algorithms were
implemented on a computer equipped with 2 RTX A6000
cards by Nvidia, both having 10752 CUDA cores and 48 Go
(DDR6) of RAM. Hyperparameters were tuned to obtain the
best performance on our dataset through extensive numerical
simulations. The selected values for the four considered deep
learning approaches are summarized in Table 1.

Hyperparameters Enhanced-A3T-GCN | LSTM | GRU GCN
Number of Epochs 50 50 50 50
Learning Rate 0.01 0.01 0.01 0.01
Hidden dimensions 64 256 256 64
Optimizer Adam Adam | Adam | Adam
Loss Function MSE MSE MSE MSE
TABLE I

CONFIGURATION OF THE FOUR MODELS

Table II presents the obtained performance including GPU
time computed over the learning process. The results show that
our Enhanced-A3T-GCN clearly outperforms all other deep
learning techniques in terms of RMSE and MAE, at the cost
of a higher computational complexity. Thus they emphasize
the benefits of combining GRU and GCN models to capture
both temporal and spatial dependencies between sensors and
of incorporating an attention mechanism.

Approaches RMSE | MAE | GPU time (s)

Enhanced-A3T-GCN 0,397 | 0.286 17,198

LSTM 0.573 | 0.426 9,436

GRU 0.482 | 0.352 1,317

GCN 0,631 0.448 503
TABLE II

COMPARISON BETWEEN OUR PROPOSED APPROACH AND SEVERAL DEEP
LEARNING FORECASTING METHODS
In the following, we investigate the impact of the adjacency
matrix used by the A3T-GCN model and we compare in
Table III the RMSE and MAE achieved when considering only

the spatial correlation-based adjacency matrix Q5P the tem-
poral correlation-based one Qemporal “the sensor environment-
based one Q5 ™ and finally our proposed adjacency matrix
QPP combining all the three above. We can note that our
proposed new matrix 2% ™| that takes into account the sensor
environment similarity, gives better results than the conven-
tional matrices embedding the spatial or temporal correlations.
Finally the A3T-GCN with our proposed combined adjacency
matrix Q™ clearly outperforms all other versions of A3T-
GCN using adjacency matrices only focusing on one of the
above relationships.

Adjacency matrices used in A3T-GCN MAE | RMSE
() Spatial 0.413 0.521
¢ Temporal 0.402 0.515
S Env. 0.343 0.461
QProp. 0.286 0.397

TABLE III
IMPACT OF THE ADJACENCY MATRIX FED TO THE A3T-GCN

In the following, we investigate the impact of the training set
size, i.e. the number of samples, used to predict the Ny = 1893
values of the test set (which represents 20% of the whole
dataset). We here consider time series cross-validation based
on a rolling window: fixed-size training and test windows are
moved across the dataset. Table IV presents both the averaged
RMSE and the standard deviation (SD) obtained over 5 splits,
except when 80% of the dataset is used for training because
the splitting is unique. We can see a slight improvement in
prediction with increasing training set size. Prediction remains
very good with a training set size smaller than 80%.

Train | Test | RMSE (mean + S.D)

20% | 20% 0.405 + 0.044

40% | 20% 0.391 + 0.051

60% | 20% 0.396 + 0.040

80% | 20% 0.397
TABLE IV

STABILITY OF ENHANCED-A3T-GCN UNDER DIFFERENT TRAINING AND
TESTING RATIOS

C. Anomaly detection performance

Now we investigate the ability of our proposed Enhanced-
A3T-GCN to detect anomalies. To do so, simulated anoma-
lies are injected in the test set. To simulate a temporary
change in level and variance, they are obtained by adding
100 consecutive random values drawn according to a Poisson
distribution of parameter A = 8 to the pre-processed real
PM, 5 concentrations. The resulting time series is considered
as the truth-valued data. We consider two types of anomalies:
i) local anomalies, injected on data from one sensor;

ii) global anomalies, injected on data from all sensors belong-
ing to a given cluster.

Fig.2 depicts the general detection performance in terms of
ROC curves and AUC values in both cases. We can observe
that our Enhanced-A3T-GCN is able to detect anomalies very
well at both sensor and cluster levels, with AUC values re-
spectively equal to 0.98 and 0.97. Further, the figure indicates
for each ROC curve the optimal threshold (that maximizes
the true positive rate while minimizing the false positive rate)
above which a measurement is considered as an anomaly.
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Fig. 2. ROC curves for local and global anomaly detection

An example of local anomaly detection affecting one sensor
is depicted in Fig. 3. The yellow curve represents the actual
data in which the 100 consecutive anomalies are injected
from observation 1450. The blue curve represents the accurate
prediction provided by our Enhanced-A3T-GCN and all red
points are detected anomalies due to their distance to the actual
data above the optimal threshold obtained from the ROC curve.
We can note that our proposed approach detects a very high
proportion of anomalies, as well as a few points that were not
artificially injected but deviate from the true data and could
correspond to unknown anomalies already in the original data.
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Fig. 3. Local anomaly detection visualization
IV. CONCLUSION AND FUTURE WORK

This paper proposes an Enhanced-A3T-GCN pollutant fore-
casting approach, that embeds in a graph both spatial and
temporal correlations in PM; 5 measurements alongside with
additional information regarding the sensor environment. The
latter is obtained by exploiting various qualitative informa-
tion regarding the location of the sensors, as well as public
auxiliary variables. The accuracy of our proposed approach is
validated via numerical simulations, highlighting the benefits
of exploiting the sensor environment knowledge compared
to using more classical spatio-temporal correlations. Further,
our Enhanced-A3T-GCN is shown to outperform other deep
learning forecasting methods from the literature. Finally, our
proposed approach is also shown to efficiently help detecting
simulated anomalies, corresponding to a temporary change
in level and variance of measurements, at both single and
multiple sensor levels. In future work, we will investigate its
ability to detect other types of anomalies, such as punctual
ones, e.g. corresponding to engine start or pollution peak. We
will also study the effect of seasonality on the forecasting
performance by considering data acquired over different times
of the year. Additionally, we intend to further enhance the
accuracy of our forecasting and anomaly detection method

by including several meteorological parameters, as well as by
considering other pollutant concentrations.
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