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Abstract—Facial expression spotting is an effective metric for
categorizing human behavior changes. It refers to the precise
localization of the temporal intervals in a sequence where a
visual event occurs in a face. In this paper, we propose an
innovative framework, which relies on the consistency in terms
of orientation and intensity of the local facial motions. First,
we build local facial motion consistency maps to differentiate
expression-related facial motion from facial noise. Then, these
maps are fed into a recurrent neural network to precisely
delineate the temporal progression of facial expression activation.
Extensive evaluations were undertaken on SNAP-2DFE dataset
demonstrating the effectiveness of the proposed framework in
temporally segmenting expression activation in presence of low
or high head pose variations

Index Terms—facial expression, spotting, motion, deep learning

I. INTRODUCTION

Automatic visual event spotting is a very popular and a
current trendy research topic [1]. It is applicable to many areas,
such as behavioral changes detection or to anticipate risks (fall
detection, suspicious behavior), where accuracy is important in
order to provide a quick response. Among the many possible
application domains, our focus is on facial expression analysis.
Facial expression (FE) is a non-verbal communication clue that
makes possible the analysis of personal emotional states [2].
Automatic FE analysis usually includes two tasks: spotting and
recognition. FE recognition associates a class to a given FE.
Spotting consists in finding the temporal intervals in a video
sequence which contain the FE (from the onset to the offset)
(see Figure 1). Originally, FE recognition was only conducted
on curated and well segmented video sequences. However,
real-world application systems require dealing with long non-
segmented videos. The spotting of FE in video sequences is a
prerequisite for advanced human behavior analysis [3].

Spotting facial expressions can be challenging due to the
multitude of factors involved: 1) the facial movement intensity
can vary depending on the specific expression and the indi-
vidual ranging from micro and macro movements [4] ; 2) the
occurrence of subtle changes due to other factors (i.e., head
movement, light variation) ; 3) the scarcity of labelled data
due to the difficulty for human observers to perceive the onset
phase of a FE, especially when variations in facial pose are

Fig. 1. Example of facial expression spotting. First line - video sequence;
Second line - activation sequence of the facial expression within the video
from its onset (activation of the expression) to the apex (moment when the
expression is most intense) and back to the offset (end of the expression and
return to neutral)).

encountered - the small amount of available training data is a
serious limitation for evaluating current FE spotting systems.

In this paper, we propose an innovative framework which
accurately spots the FE, while taking into account the chal-
lenges mentioned above (see Figure 2). The particularity of
our approach lies in the ability to train a model to accom-
modate facial movement noise induced by other sources (e.g.
variations in head pose) that are not related to facial muscle
activation. Assuming that facial movement is governed by
strong physical constraints, the movement flows are expected
to be locally consistent in terms of intensity and direction. We
rely on these constraints to train a neural network to faithfully
capture genuine facial motions. The initial network, focused
on disentangling genuine facial motion from noise, generates
a consistent motion map, which is subsequently integrated
into a recurrent neural network to precisely track the temporal
activation of facial expressions. Moreover, this temporal model
allows for the exclusion of disruptive movements such as eye
blinks or head movements, that exhibit coherent movement
patterns but are irrelevant for expression spotting analysis. Our
paper delves into the analysis of spotting within more dynamic
environments, where head movements are also considered.

We demonstrate how our method, centered on encoding
facial expressions through facial local motion and recurrent
neural networks, addresses the challenges posed by the vari-
ability of facial expression intensity, the presence of motion
noise induced by head pose variation, and the lack of training



Fig. 2. Overview of the FE spotting analysis process. A) Facial motion is calculated using a dense optical flow approach. The optical flow is then encoded
using a 2DCNN architecture, driven by a loss function based on the Wasserstein distance, to keep only the motion induced by the FE. B) The extracted facial
motion maps are fed into a LSTM to detect the FE phase. C) The output of the system corresponds to a probability series reflecting the FE spotting.

data. For this, we use the SNaP-2DFe database [5] due to its
comprehensive annotations covering all six facial expressions
and providing detailed information about expression activa-
tion (i.e., onset, apex, offset). This investigation encompasses
sequences captured under two conditions: sequences with
minimal pose variation (Cam 1) and those with pronounced
pose variations (Cam 2). It’s worth mentioning that the se-
quences from Cam 1 and Cam 2 are synchronized, offering a
valuable opportunity to examine the challenges posed by head
movements.

The paper is structured as follows. Section II provides
an overview of the recent approaches for facial movement
encoding and FE spotting. Section III presents our approach
for extracting consistent facial motion maps. Section IV
presents how the recurrent neural network perform FE spotting
in a video sequence exploiting the consistent motion maps.
Section V illustrates the outcomes achieved on SNAP-2DFE
in presence or absence of head pose variations. Finally, we
discuss the results and future work in Section VI.

II. RELATED WORK

A. Facial expression Features Extraction

The majority of frameworks for facial expression (FE)
spotting analyze feature differences between images in a time
window. These features are either handcrafted or learned.
Handcrafted approaches utilize texture and motion temporal
descriptors like Local Binary Patterns on Three Orthogonal
Planes (LBP-TOP) [6], [7] and optical flow [8] to encode
FE. Optical flows have garnered significant interest due to
their ability to encode micro-movements [9]–[11]. Micro-
movements are very important in FE spotting as they occur
at the onset and the offset phases. Recent works focus on
filtering optical flows to isolate FE-induced movements [9],
[12], demonstrating that analyzing both movement intensity
and direction adequately encode micro-movements. While

handcrafted approaches offer good performance, their general-
ization diminishes in the presence of complex data. Learning-
based approaches, in contrast, employ joint feature learning
and classification pipelines. These solutions benefit from the
invariance and robustness of the extracted features during the
learning phase with regard to the available learning data. They
exploit directly raw images [13] or descriptors such as LBP
[14] or optical flow [15]. Temporal extensions [14], [16]–
[18] have been proposed in order to harness the temporal
dimension of FE. However, their efficacy remains limited
because they require substantial training data, which is lacking
in FE spotting.

B. Facial Expression Peak Event Detection

Spotting can be addressed as a classification task, where
each image is classified to neutral, onset, apex or offset
state [3]. Two main classes exist: Thresholding-based ap-
proaches and Learning-based approaches. Thresholding-based
methods analyze feature differences along the sequence using
appearance-based [20] or motion-based features [8], [21].
Image differences are computed, and a sliding window detects
peaks using a threshold [20], [22]. However, the success
of these approaches heavily relies on threshold parameter
selection and may not improve when more data is avail-
able [23]. Learning-based approaches, including traditional
machine learning (ML) methods like Support Vector Ma-
chine (SVM), Random Forest (RF), Decision Trees (DTs)
[12], [24]–[26], and modern deep learning techniques such
as Convolutional Neural Networks (CNNs) [27], [28] and
Recurrent Neural Networks (RNNs) [23], have been proposed
to overcome the limitations of threshold-based methods. For
example, Verburg et al. [23] proposed an RNN-based FE
spotting method to encode temporal changes in facial regions.
However, research in this area remains limited due to the lack
of training data.



Fig. 3. The model is trained using a subset of CK+ [19] to encode consistent movements (rated between 0-1) associated with facial expression activation (i.e.,
facial motion between neutral and onset phase - at different intensities (left)). Motion coherence maps generated using Wasserstein (middle) and ChiSquare
(right) highlight the significance of considering local motion propagation when labeling facial motion consistency in presence of a facial expression.

C. Handling Limited Training Data for Expression Spotting

Many methods proposed for FE spotting struggle due to
insufficient training data [3]. Researchers explore augmen-
tation techniques, often involving translations, rotations, and
scaling directly on raw images [29]. However, these methods
are limited in FE spotting, especially during the onset phase
where facial motion and noise intensity are similar. To ad-
dress this, temporal augmentation methods adapted to facial
expression analysis have been introduced. For example, Li
et al. [30] employ temporal interpolation and motion mag-
nification. However, these approaches may lead to significant
deformations impacting performance in presence of motion
noise. In response, some researchers compare various methods
for selecting representative frame pairs [31] or combine mul-
tiple optical flow methods to compute facial movement [32],
enhancing data variability and aiding in model generalization.
Despite these advancements, most optical flow augmentation
approaches rely on smoothing techniques, leading to informa-
tion loss as the difference between motion related to expression
activation and noise becomes minimal.

III. MOTION CONSISTENCY MAP

In order to preserve the facial motion induced by the FE,
we rely on the properties of the facial motion highlighted
in [9]: motion within a localized facial area cannot undergo
significant variation due to existing bio-mechanical laws. This
indicates that there should be no abrupt motion changes
neither in direction nor intensity, between consecutive images.
Based on these observations, we provide labeled data and we
train a model which is intended to dissociate consistent and
inconsistent local facial motion.

In order to establish a robust metric for training a model
to encode facial movement ranging from micro to macro-
movements, it is crucial to closely examine how facial expres-
sions influence the dynamics of facial movements. We selected
a set of facial expressions to analyse facial movements at
various levels of intensity (see Figure 3). In order to reduce the
biases in describing a coherent facial movement, the selected
data is acquired under excellent conditions (no pose variation,
no illumination change).

In each sequence, the optical flow between the first image
(neutral state) and different images of the sequence between
the onset phase and the apex were generated to observe the
facial movement patterns during the activation phase of the
expression.

In contrast with other works, our approach consists in split-
ting the face into a set of small motion patches of dimension
k ∗ k. This alleviates difficulties, such as the size of the train-
ing set and the inter-individual variations as many identity-
disentangled patches can be collected. Utilized human motion
properties facilitate convergence and model re-use with a
limited number of participants. Recent work has demonstrated
that the use of motion modality for facial expression analysis,
can reduce the complexity of the learning process [31]. Indeed,
the same expression or action, the appearance or geometry
varies greatly between different individuals. However, there
is a strong similarity between the data when analyzing the
motion induced by the facial muscles or the joints of the
human body, which are governed by strong biomechanical
constraints. Consider two successive face images i and i′ of
dimensions w ∗ h, OF (i, i′) represents the dense optical flow
computed between these two images. The images i and i′, as
well as OF (i, i′) are identically split into a set of small patches
of dimension k ∗ k. Each patch is characterized by an optical
flow matrix of dimension k ∗ k ∗ channel, where channel
equals two (i.e., direction and magnitude of the motion in each
pixel). Each small patch OF (i, i′)(x, y) is then processed in
order to measure the motion consistency. In order to facilitate
the generalization of the model to handle new datasets, the
magnitude of motion is normalized by a common clipping
technique. The clipping threshold can be chosen efficiently by
plotting the distribution of the magnitude and then choosing
a value that prevents large information loss (e.g., the third
quartile Q3).

The motion consistency map is calculated as follows: first
the face is detected, cropped, then the optical flow is calcu-
lated, on high resolution images, and resized by average mean
pooling. For each patch OF (i, i′)(x, y), the annotation of a
patch reflects the consistency of motion distribution.

The patches are fed into a 2DCNN which encode the optical
flow features (direction, intensity and distribution) in order



Fig. 4. Qualitative results of the local consistent facial motion extracted by
the proposed 2DCNN model learned on the generated training data. High
motion intensities - CK+ [19]. Low motion intensities - CASME2 [6].

to learn motion consistency. Inspired by [9], the Wasserstein
distance [33] is used as a loss function within the 2D CNN.
This methodology appears to be better suited than others, as
it captures the nature of motion propagation over time, as
shown in Figure 3. Consider a sequence of three successive
images i1, i2 and i3, where two patches OF (i1, i2)(x, y) and
OF (i2, i3)(x, y) are extracted. The label (0 or 1) associated
to a patch depends on the Wasserstein distance between the
two patches to guarantee local motion coherence Llocal, and
on the distance between the patch and its direct neighbors in
4 connected at ±k pixels offset on x and y Lprop to guarantee
motion coherence in terms of propagation. Global coherence
Lglobal can be formulated as follows: Lglobal = λ1 Llocal +
λ2 Lprop where λ1 and λ2 are scaling factors. The qualitative
results of training a basic 2DCNN are shown in Figure 4.
Learning based on local motion propagation seems well suited
to dissociating low- and high-intensity coherent motions.

IV. FACIAL EXPRESSION SPOTTING

A. Adapting FE spotting through motion analysis

The spotting method proposed in this work only considers
the onset and offset phases as we deal with motion patterns that
do not occur during the apex phase, where often we observe no
motion at all. As shown in Figure 5, depending on the person
and the expression, the activation intervals (onset, apex, offset)
vary strongly from one sequence to another, both in terms of
duration and intensity (represented by the dotted line).

To design the training data, the SNaP-2DFe database [5]
is used. Each video V in the dataset starts and ends with
a neutral phase, which results in a phase with no movement.
Cumulated with the apex phases, where the behavior is similar,
we decide to delineate each video according to the onset and
the offset of the activation. So, for each V we only consider the
sequence S that starts at the image situated at the onset minus
a small temporal delta ∆T in order to catch the premises of the
activation sequence and ends at offset plus a small temporal
delta ∆T in order to capture the end of the activation sequence.
This provides a balance between motionless sequences and
onset and offset sequences, which we intend to learn. Using a
sliding window, each sequence S is sub-sampled into a set of
sub-sequences Si of l images neighboring the onset and offset
points. A time step d is fixed for the window shift in order to

guarantee an overlap of images between two successive sub-
sequences. Each sub-sequence Si is annotated depending to
the overlap with the onset/offset phase. The labels is equal to
1 if if the ratio between the overlap and the sub-sequence size
is greater than a given threshold k and to 0 either-wise.

B. Peak Event Detection

In order to spot the FE activation phases in a given video, we
proceed in two steps: the first step consists of motion encoding
by the 2DCNN proposed in Section III to obtain a series
of facial motion consistency feature maps M ∈ ℜH∗W∗C

over the considered sequence. The second step consists in
sequences classification. Starting from the encoded feature
maps M , a subsampling is performed in order to generate
for each sub-sequence Si(section IV-A) the local consistency
maps Mi which are fed to a LSTM model. The model
architecture is composed of three stacked LSTM layers with
intermediate batch normalization layers and two MLP layers.
A GELU non-linear activation function is adopted throughout
all these layers. The last layer outputs a confidence score
between 0 and 1. A threshold T is then applied on the
confidence score to predict if the sub-sequence belongs or not
to the onset/offset phase.

Frame-based decision - Once the LSTM model predicts a
score for each sub-sequence, we need to aggregate all these
results by tackling the issue of overlapped predictions at frame
level. In our scenario, the model processes the same frame
multiple times, depending on the stride of the sliding window.
As the frame position change further from the onset phase
towards the apex phase, the score associated with each frame
within the sliding window increases. Once the frame exits the
sliding window, a global score is computed by averaging all
the obtained scores. Additionally, to calculate the score per
frame, we sum all the confidence scores of the LSTM model
and divide by the number of times that frame has been seen by
the model. Subsequently, a threshold is applied to this average
score to determine whether the frame belongs to the onset -
offset phase.

Fig. 5. Details of the expression activation phases. The duration of various
phases (onset, apex, offset) varies strongly from one sequence to another, both
in terms of duration and intensity. The facial motion maps at the top of the
figure represent the outputs returned by our 2DCNN model.



V. EVALUATION

A. Datasets

We use the SNaP-2DFe database [5] due to its comprehen-
sive annotations providing detailed information about expres-
sion activation (i.e., onset, apex, offset) and head pose changes.
The dataset contains 1260 sequences of 15 subjects. Each
sequence correspond to one of the six basic facial expressions
(i.e., happiness, anger, disgust, fear, sadness, surprise) enacted
by untrained persons with head pose and facial expression
intensity variations, closely resembling real-world scenarios.
For each subject, six head pose variations combined with seven
expressions were recorded by two cameras, which results in
a total of 630 recordings captured with a helmet camera
(i.e., without head movement) and 630 recordings captured
with a regular camera placed in front of the user (i.e., with
head movements). This ensures that the dataset accurately
reflects the intricacies of facial expressions and biomechanical
constraints, making it exceptionally suitable for addressing
the challenges posed by head pose variation for facial motion
spotting.

B. Performance metrics

To evaluate the model, we use the F1 Score. For each sub-
sequence Si of l frames, the model returns a probability be-
tween 0 and 1. A sub-sequence Si is considered as belonging
to the onset or the offset phase, if the confidence score is
greater than a predefined threshold T . Hence, for a given sub-
sequence Si), True Positive (TP), False Positive (FP), False
Negative (FN) and True Negative (TN) are defined in terms
of whether the sub-sequence Si belongs to the onset or offset
phase. For each evaluation, the F1 score is calculated, along
with recall, precision and accuracy.

C. Implementation Details

Following the study of optical flows for FE recognition
[32], the facial motion is calculated using Farnebäck method
[34]. We use a clipping value of 10.0 for magnitudes. This
value was calculated according to the average distribution
of the facial movement and motion intensities on SNaP-
2DFe dataset, and we normalize both magnitudes ([0..1]) and
directions ([−π..π]).

The 2DCNN model undergoes training on 9,000 patches,
ensuring an equal distribution between the two classes (i.e.,
consistent or inconsistent) using a loss function derived from
the Wasserstein distance. The training spans 10 epochs with a
batch size of 64 and encompasses 8,769 parameters.

To fed our LSTM model, we build our training dataset by
considering sequences with a temporal delta ∆T equal to 10
and for each sequence setting up the sub-sequences length l
to 10 and the temporal stride d to 1. For the annotation, k is
set to 0.5. This results in generating 34,020 sub-sequences
distributed equally between two classes (i.e., presence or
absence of FE activation). The training consists of 20 epochs
with a batch size of 128.

D. Quantitative results

To assess the proficiency of our method in spotting the
activation phase, we conduct a study following the Leave-One-
Subject-Out (LOSO) protocol. This approach helps mitigate
learning biases across various subjects within the SNaP-
2DFe database. Each model is subject to the following data
distribution of sub-sequences : train - 29,484, validation -
2,268 and test - 2,268. The data is balanced, guaranteeing an
identical ratio between sequences belonging to the onset and
offset phases, and the other phases. The data is also stratified to
ensure an identical ratio of sequences specific to an expression
or head movement.

This investigation encompasses sequences captured under
two conditions: limited pose variation (Cam 1) and pronounced
pose variations (Cam 2). It’s worth mentioning that the se-
quences from Cam 1 and Cam 2 are synchronized, offering
a valuable opportunity to examine the challenges posed by
head movements. Table I shows the results obtained on all
configurations for each model trained on the different subjects
in the database. The results are obtained with the following
parameters: T = 0.2.

In regards to performance, the data from Cam1 are more
straightforward for the model to interpret. This is due to
the presence of small head pose variation. Analyzing Cam2
data proves to be more challenging, resulting in an average
accuracy decrease of 13.5pp. This difficulty arises from large
head pose variations. Application of the LOSO protocol en-
ables us to identify significant differences between subjects.
This is mainly due to the variability of activation patterns,
and more specifically to the speed of activation and the
duration of the onset and offset phases, which depend on the
reaction time of the subject. This is particularly true in the
presence of pose variation, where concentrating on making
the right head movement, while making a facial expression

TABLE I
PERFORMANCE METRICS OBTAINED WITH THE LOSO VALIDATION

PROTOCOL IN PRESENCE OR ABSENCE OF HEAD MOTION.

Subject
Cam1 - without head motion Cam2 - with head motion

Accuracy F1 Recall Precision Accuracy F1 Recall Precision

SN001 81.0% 66.0% 69.0% 64.0% 63.0% 51.0% 74.0% 39.0%

SN002 84.0% 75.0% 84.0% 68.0% 72.0% 13.0% 07.0% 62.0%

SN003 64.0% 59.0% 97.0% 42.0% 36.0% 45.0% 97.0% 29.0%

SN004 80.0% 75.0% 83.0% 67.0% 73.0% 58.0% 54.0% 63.0%

SN005 78.0% 48.0% 36.0% 74.0% 38.0% 47.0% 97.0% 31.0%

SN006 86.0% 61.0% 55.0% 70.0% 72.0% 50.0% 71.0% 38.0%

SN007 80.0% 59.0% 56.0% 61.0% 63.0% 52.0% 82.0% 38.0%

SN008 82.0% 63.0% 63.0% 63.0% 74.0% 11.0% 06.0% 34.0%

SN009 74.0% 30.0% 23.0% 41.0% 74.0% 42.0% 42.0% 43.0%

SN010 59.0% 56.0% 89.0% 41.0% 50.0% 51.0% 88.0% 36.0%

SN011 76.0% 56.0% 45.0% 74.0% 38.0% 50.0% 92.0% 34.0%

SN012 58.0% 58.0% 94.0% 41.0% 63.0% 57.0% 81.0% 44.0%

SN013 76.0% 74.0% 89.0% 63.0% 68.0% 64.0% 77.0% 54.0%

SN014 77.0% 68.0% 59.0% 82.0% 53.0% 63.0% 94.0% 48.0%

SN015 45.0% 58.0% 99.0% 41.0% 65.0% 23.0% 14.0% 73.0%

Mean 73.5% 60.4% 69.5% 59.5% 60.0% 45.2% 65.2% 44.4%



Fig. 6. Prediction of the LSTM model according to the two camera on
different sequences of SNaP-2DFe following the corresponding activation
pattern: neutral - onset - apex - offset - neutral. A) Nothing-Happy-SN001;
B) Nothing-Happy-SN010; C) Yaw-Anger-SN012; D) Diag-Disgust-SN007.

at the right moment, causes significant variation in activation
patterns. On average, the performance of Cam2 is worse
than that of Cam1, particularly in terms of model precision.
The confidence scores returned by the LSTM model are less
reliable, making it difficult to delimit the onset and offset
phases using thresholding, resulting in a wider range of false
positives (see Figure 6).

To deepen the studies, we propose a more detailed analysis
of the expressions (Table II) and the different head pose
variations (Table III). In these tables, values correspond to
average scores calculated on all subjects on both Cam1 and
Cam2 in Table I. The results are obtained with T = 0.2.

In terms of expression (Table II), ’sadness’ and ’anger’
are more difficult for the model to interpret, whether or not
there is head movement. This is because the same regions
around the eyes and mouth are activated on these expressions,
making analysis more complex. This difficulty is reinforced
in the presence of pose variation, where the small movements
induced by these expressions are mixed up with the movement
of the head pose. Figures 6-A and 6-B illustrate predictions
obtained by the models on Cam1 and Cam2, on the same
expression ’happy’, without head pose variation and on two
different subjects. Under these conditions, decrease in perfor-
mance can be explained by noise coming from eye blinks,
which are perceived as coherent movements. This problem
is probably linked to the lack of variability of the activation
phases in the training data. On these same configuration, the
model trained on Cam2 encounters an additional difficulty in
the confidence score.

With regard to head pose variations (Table III), the faster
the movement in the 2D plane (Tx and Roll), which blurs the
image, or the greater the movement in the 3D plane, which
tends to occlude the face (Yaw), the more difficult it becomes
for the model to delimit the activation of the expression.
Figures 6-C and 6-D illustrate predictions obtained by the
models on Cam1 and Cam2, on two different head movements.

TABLE II
PERFORMANCE METRICS PER EXPESSION.

Expression
Cam1 - without head motion Cam2 - with head motion

Accuracy F1 Recall Precision Accuracy F1 Recall Precision

Happiness 72.0% 64.0% 72.0% 57.0% 59.0% 52.0% 64.0% 43.0%
Sadness 70.0% 56.0% 67.0% 47.0% 61.0% 47.0% 65.0% 37.0%
Anger 74.0% 57.0% 63.0% 53.0% 60.0% 47.0% 64.0% 37.0%

Disgust 75.0% 64.0% 75.0% 56.0% 59.0% 49.0% 66.0% 39.0%
Fear 75.0% 63.0% 70.0% 57.0% 60.0% 50.0% 65.0% 41.0%

Surprise 74.0% 65.0% 77.0% 56.0% 60.0% 53.0% 72.0% 41.0%

Mean 73.5% 61.4% 70.9% 54.2% 60.0% 49.6% 65.9% 39.8%

TABLE III
PERFORMANCE METRICS PER HEAD POSE.

Pose
Cam1 - without head motion Cam2 - with head motion

Accuracy F1 Recall Precision Accuracy F1 Recall Precision

Nothing 74.0% 65.0% 76.0% 57.0% 65.0% 53.0% 62.0% 47.0%
Tx 74.0% 59.0% 67.0% 53.0% 61.0% 48.0% 64.0% 38.0%

Yaw 73.0% 58.0% 66.0% 51.0% 58.0% 47.0% 65.0% 36.0%
Pitch 73.0% 65.0% 77.0% 57.0% 61.0% 52.0% 65.0% 43.0%
Roll 73.0% 57.0% 63.0% 51.0% 55.0% 46.0% 69.0% 35.0%
Diag 73.0% 63.0% 75.0% 55.0% 60.0% 52.0% 70.0% 41.0%

Mean 73.5% 61.3% 70.7% 54.1% 60.0% 49.7% 65.9% 40.1%

Under these conditions, we notice that the two models have
more difficulty predicting the activation phases of expressions.
The Cam1 model, trained on data without pose variation,
manages to delimit the phases, but greater uncertainty appears,
sometimes reducing the confidence to a very low score. As for
the Cam2 model, it tends to be more sensitive to movements
which results in a less clear dissociation of the activation
phases. In these two cases the application of the threshold
is limited.

VI. CONCLUSION

In this paper, we propose an approach for FE spotting
based on facial movement consistency maps. The exploita-
tion of motion features allows models to finely encode the
micro and macro movements characterizing a FE. The use
of the SNaP-2DFe database provides an ideal framework for
working on the analysis of spotting of FE in the presence
of pose variations through its system for synchronous capture
of expressions with and without pose variations of the face,
making this study innovative in the context of spotting FE. The
experiments raised interesting avenues to explore. In particular,
the exploitation of facial movement consistency maps tends
to identify phases of expression activation in the presence
of significant head pose variation. Future work on post-
processing and learning methods can be explored to improve
performance in the presence of strong variations in head pose
and reduce processing time.. In particular, the use of an end-
to-end method, taking into account both spatial encoding of
motion and temporal encoding related to expressions based on
self-supervised spatio-temporal graphs and transformers.
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and M. Pietikäinen, “Reading hidden emotions: spontaneous micro-
expression spotting and recognition,” in CVPR, 2015, pp. 217–230.

[31] D. Poux, B. Allaert, N. Ihaddadene, I. M. Bilasco, C. Djeraba, and
M. Bennamoun, “Dynamic facial expression recognition under partial
occlusion with optical flow reconstruction,” IEEE Transactions on Image
Processing, vol. 31, pp. 446–457, 2021.

[32] B. Allaert, I. R. Ward, M. Bilasco, C. Djeraba, and M. Bennamoun,
“A comparative study on optical flow for facial expression analysis,”
Neurocomputing, 2022.
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