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While the automotive industry has made significant contributions to vision-based dynamic risk assessment, progress has been limited in the railway domain. This is mainly due to the lack of data and to the unavailability of security-based annotation for the existing datasets. This paper proposes the first annotation framework for the railway domain that takes into account the different components that significantly contribute to the visionbased risk estimation in driving scenarios, thus enabling an accurate railway risk assessment. A first baseline based on neural network is performed to prove the consistency of the risk-based annotation. The performances show promising results for vision-based risk assessment according to different levels of risk.

INTRODUCTION

Autonomous vehicles aim to provide many benefits, such as reducing road accidents, congestion, air pollution and improving transport efficiency. These vehicles can move without human intervention, using a combination of sensors, algorithms and communication systems to detect obstacles, assess driving situations and make decisions accordingly. Autonomous car technology has grown significantly, making remarkable advances in road safety, connectivity and mobility [START_REF] Van Brummelen | Autonomous vehicle perception: The technology of today and tomorrow[END_REF]. However, few advances have been made in autonomous trains.

Autonomous vehicle safety is a set of safety protocols, procedures and guidelines which aim to ensure that autonomous vehicles are safe for users, passengers and pedestrians. They relies on sensors and technologies such as cameras, radars and lidars in order to collect data from the surrounding [START_REF] Vargas | An Overview of Autonomous Vehicles Sensors and Their Vulnerability to Weather Conditions[END_REF][START_REF] Zhang | Perception and sensing for autonomous vehicles under adverse weather conditions: A survey[END_REF]. The collected data is then used by sophisticated learning algorithms so as to guide the vehicle autonomously on roads by assessing the surrounding based on many criteria such as obstacle detection, lane conditions and road user behavior anticipation [START_REF] Guo | Is it Safe to Drive? An Overview of Factors, Metrics, and Datasets for Driveability Assessment in Autonomous Driving[END_REF]. It is necessary to develop, behind these sensors, an information pro-cessing chain, usually based on Artificial Intelligence [START_REF] Kuutti | A Survey of Deep Learning Applications to Autonomous Vehicle Control[END_REF][START_REF] Grigorescu | A survey of deep learning techniques for autonomous driving[END_REF], which allows the autonomous system to ensure relevant decision making as a replacement for the human driver, even in an "uncertain" environment.

Datasets are essential for the development of learning-based decision-making systems. For the autonomous car, several datasets are available, which helps the emergence of these systems [START_REF] Janai | Computer vision for autonomous vehicles: Problems, datasets and state of the art[END_REF]. However, the ownership of railways by industrial actors tends to increase the difficulty of designing datasets to evaluate driving systems for the autonomous train. Existing work mainly focuses on improving the performance of low-level estimates such as lane detection or semantic segmentation [START_REF] Yurtsever | A Survey of Autonomous Driving: Common Practices and Emerging Technologies[END_REF]. The hypothesis under such efforts is that these low level estimations are the basis of human drivers' high level driving operations. However, predicting driving commands or suggestions from these low-level estimates has not been well studied. At present, only a few datasets are available for the railway domain, and of these, none is annotated in terms of risk assessment [START_REF] Pappaterra | A Systematic Review of Artificial Intelligence Public Datasets for Railway Applications[END_REF].

In this paper, we propose a new annotation framework for the railway domain containing vision-based annotated risk assessment data, called SMART-RD (riSk assessMent frAmework foR auTonomous Railway Driving). The annotations were performed on the existing RailSem19 dataset [START_REF] Zendel | RailSem19: A Dataset for Semantic Rail Scene Understanding[END_REF], which is widely used for train scene understanding algorithms in the railway domain. This dataset offers a wide range of situations which are very suitable for risk assessment. As illustrated in Fig. 1, the situations are annotated according to three levels of risk, e.g., secure, moderate or high. These levels are defined by a panel of three annotators, according to several criteria: the context (rail profile, track protection), the users (behavior, distance, density), the weather, and the luminosity. Several evaluations have been carried out to highlight the quality of the collected annotations, and the feasibility of training a decision making system based on these data.

The paper is structured as follows: Section 2 presents a position on the development of datasets to train decision making systems to assess a risk for autonomous driving. The design of the framework, from the annotation protocol to the study of the collected annotations, is given in Section 3. Section 4 contains the evaluation of a first decision making system based on our framework. A conclusion is made in section 5.

RELATED WORKS

Decision-making algorithms need to be trained and evaluated on datasets in order to get a model with a high generalization and to ensure the safety of the system. To our knowledge, there are no annotated datasets on risk assessment based on a vision system in the railway domain. Therefore, the present analysis is based on datasets designed for the automotive domain, which we attempt to review in order to identify annotation strategies that can be reused for our use case. Table 1 shows the different datasets proposed in the literature on vision-based risk analysis for autonomous car driving. Among the different criteria that characterize a dataset, two major criteria are analyzed: the annotation framework and the risk assessment metric.

Annotation framework Annotation is a complex task, requiring both time and energy from the annotators. Moreover, decision making algorithms rely on increasingly complex systems that require large datasets with an exhaustive scenario panel. The design of an annotation framework requires some consideration to identify the appropriate strategy providing a fast and efficient tool for annotators, while ensuring high-quality annotations. To reduce the complexity of the annotation process, several techniques are used. Among these techniques, we distinguish two categories. The first category relies on human annotation [START_REF] Wang | Collision Risk Rating of Traffic Scene from Dashboard Cameras[END_REF][START_REF] Corcoran | Traffic Risk Assessment: A Two-Stream Approach Using Dynamic-Attention[END_REF][START_REF] Yurtsever | Risky Action Recognition in Lane Change Video Clips using Deep Spatiotemporal Networks with Segmentation Mask Transfer[END_REF], guaranteeing a high level of analysis while reducing the quantity of annotated data. [START_REF] Wang | Collision Risk Rating of Traffic Scene from Dashboard Cameras[END_REF] assume that accidents are brief compared to other driving situations, so they focus only on short video clips of a few seconds to build their dataset, at the expense of scenario variety. [START_REF] Corcoran | Traffic Risk Assessment: A Two-Stream Approach Using Dynamic-Attention[END_REF] propose to simplify the annotation of a video sequence by applying the same level of risk to the whole clip. However, this technique can lead to misinterpreted risks as it doesn't consider temporal segmentation. The second category relies on automatic techniques to annotate a large set of data very quickly [START_REF] Feth | Dynamic Risk Assessment for Vehicles of Higher Automation Levels by Deep Learning[END_REF], sometimes at the expense of a high level of analysis. [START_REF] Feth | Dynamic Risk Assessment for Vehicles of Higher Automation Levels by Deep Learning[END_REF] use a video game to generate a large dataset on which they apply an automatic metric that provides a 3D simulation-driven measurement. The ideal solution is to balance quality and quantity, but it's complicated due to the limitations of publicly datasets.

In addition to the annotation strategy, it is important to identify the criteria taken into account by the annotators to evaluate a risk. All authors agree that risk annotation is a tricky task and may vary between annotators depending on their interpretation of the scene or different criteria, such as weather, light or context. Besides synthetic datasets, other datasets rely on the expertise of at least three annotators to avoid ambiguity about a situation, although this does not always guarantee a relevant annotation, which 

✗ ✓ ✗ ✗ ✗ Weather ✗ ✗ ✗ ✗ ✓ Light ✗ ✗ ✗ ✗ ✓ User ✗ ✗ ✗ ✗ ✓ Collision ✓ ✓ ✓ ✓ ✓
sometimes requires removing data in the initial set [START_REF] Corcoran | Traffic Risk Assessment: A Two-Stream Approach Using Dynamic-Attention[END_REF]. To reduce the large variability in the annotations, the risk is generally categorized in three to five levels, ranging from safe (vehicle at normal speed), to critical risk (unavoidable accident). The granularity of the levels varies between datasets but a very strong overlap exists between all of them. Concerning the annotation criteria, the time to collision is generally taken into consideration by the annotators, either directly estimated by an algorithm [START_REF] Feth | Dynamic Risk Assessment for Vehicles of Higher Automation Levels by Deep Learning[END_REF], or interpreted according to the driver's viewpoint [START_REF] Wang | Collision Risk Rating of Traffic Scene from Dashboard Cameras[END_REF][START_REF] Corcoran | Traffic Risk Assessment: A Two-Stream Approach Using Dynamic-Attention[END_REF][START_REF] Yurtsever | Risky Action Recognition in Lane Change Video Clips using Deep Spatiotemporal Networks with Segmentation Mask Transfer[END_REF]. For this, the analysis of the behavior of other road users is an essential factor that is considered by the annotators to estimate this metric. However, this information is not integrated in the annotations. One dataset is distinguished by the availability of a temporal segmentation of the evolution of the risk [START_REF] Wang | Collision Risk Rating of Traffic Scene from Dashboard Cameras[END_REF].

Risk assessment metric Avoiding accidents is the major task of the decision-making algorithms in autonomous vehicles. Metrics such as time to collision [START_REF] Wang | Collision Risk Rating of Traffic Scene from Dashboard Cameras[END_REF][START_REF] Yurtsever | Risky Action Recognition in Lane Change Video Clips using Deep Spatiotemporal Networks with Segmentation Mask Transfer[END_REF] and time headway [START_REF] Feth | Dynamic Risk Assessment for Vehicles of Higher Automation Levels by Deep Learning[END_REF] are often used to achieve this task. [START_REF] Feth | Dynamic Risk Assessment for Vehicles of Higher Automation Levels by Deep Learning[END_REF] propose a risk metric based on time headway that measures the distance between two vehicles. Although often used, this metric is simplistic and does not take into account the multiple elements of a situation, which often leads to overestimate of risk. Furthermore, it only considers the closest vehicle, which is very limited to a specific scenario, and less suited for the railway domain. [START_REF] Wang | Collision Risk Rating of Traffic Scene from Dashboard Cameras[END_REF] propose a risk metric based on the time to collision. Since accidents are uncommon, they suggest to deal only with cases where accidents occur. The risk annotation is then defined in three levels and time-segmented according to the time to collision. This method is innovative, but their metric is only based on the time to collision, and does not take into account other elements.

To enhance risk metric reliability, [START_REF] Corcoran | Traffic Risk Assessment: A Two-Stream Approach Using Dynamic-Attention[END_REF] incorporates multiple criteria, including factors like the presence of other vehicles, vulnerable road users, traffic flow, and weather, across four risk levels. The authors acknowledge the complexity of annotating various risk factors, leading to situations being annotated at different levels by annotators. In an effort to simplify annotation, a uniform risk level is applied to entire video sequences, encompassing risk-free segments. Although faster to annotate, this method does not clearly identify the risk factors, and induces bias in the training data.

SMART-RD FRAMEWORK

The proposed SMART-RD (riSk assessMent frAmework foR auTonomous Railway Driving) framework is an extension of RailSem19 dataset [START_REF] Zendel | RailSem19: A Dataset for Semantic Rail Scene Understanding[END_REF]. RailSem19 dataset includes 8500 unique images taken from an ego-perspective of a rail vehicle (trains and tramways). Extensive semantic annotations are provided, both geometry-based (track profile) and dense label maps. One contribution of this paper is to use the RailSem19 dataset to produce a new set of annotations corresponding to the risk level in each visual scene viewed from the perspective of the driver.

Annotation tools

Risk annotation involves describing the risk factors that could cause potential damage (hazard identification) and assessing the risk associated with those hazards (risk analysis or risk assessment). Unfortunately, there is no straightforward or unique method for determining the risk level. Determining risk requires knowledge of the activities in the field, the urgency of the situations, and, most importantly, objective judgment. A train operation risk assessment is a thorough examination of various traffic situations to identify objects, situations and processes, that could harm a vulnerable target, and to assess the likelihood and severity of the risk, i.e., to determine the risk level. In our assessment, the risk levels are defined into three categories:

• Secure -visual scenes with no hazard, with a low to no probability of incident (ideal driving situation);

• Moderate -visual scenes involving hazards with a low to medium probability of causing an incident (normal driving situations);

• High -visual scenes with hazards having a high probability of causing an incident (dangerous driving situations).

For each of the RailSem19 dataset images, SMART-RD brought risk annotations over 5 different modalities often observed in the literature: general risk, weather, light, users and context. The choice to extract different risk categories answers the fact that most of works in the literature struggle to assess the risk directly. In the proposed framework, the general risk is divided into the three risk levels aforementioned. The other modalities are broken down into 11 levels from 0 to 10. Fig. 2 illustrates the annotation tool used to annotate the Railsem19 dataset. To avoid annotation bias due to tiredness, the tool makes it possible to divide the dataset into subsets and pick up the annotation process where it was left off.

Annotation guidelines

In order to have a greater statistical significance, the Railsem19 dataset is annotated by three different annotators. It allows to avoid outliers by applying an aggregation method on the three annotations (mean, majority vote, max, etc.) Scenes with a strong disagreement between annotators are also interesting since they probably carry subtle elements that can induce a switch in the risk assessment. They can therefore be a topic of interest by their own. Instead of some work, we voluntarily keep these occurrences in the dataset since they might carry complex but interesting risk features.

Risk assessment is a very subjective task. Therefore, annotators have been given instructions in order to keep a certain level of coherence between their results. Based on a first subset of the data, discussions were held to adjust the evaluation criteria. For each metric, a list of the different elements considered by the annotators during the evaluation was established.

Weather refers to the weather conditions and their implications for the ego-vehicle and other users. Weather is considered dangerous when visibility is reduced (fog) or when it causes changes in track conditions (slippery due to rain or snow). The accumulation of these effects or the severity of the weather conditions also influences the score, such as the fact that snow covers the rail partially or totally.

Light refers to the lighting condition in the scene. The risk score varies depending on the amount of light, but also on the contrast, for example at sunrise and sunset. In some situations, light rays strongly reduce the visibility of the sensors, which makes decision making extremely difficult. Users refers to all other dynamic users of the scene. The risk factor is mainly based on collision between the vehicle and the user. Each obstacle is a potential risk, whatever its nature (object, animal or person). Several criteria are considered to evaluate the level of danger that the obstacle represents. Size, estimated speed, trajectory, distance from the vehicle and from the lane, and density are criteria to consider. When it comes to living obstacles (animals or people), behavioral analysis is also an essential criterion, including features like posture, gaze or attention in order to anticipate the reaction of this user to the train passage.

Context refers to the environment in which the train is located. The risk factor is mainly related to the conditions surrounding the train, such as the presence of rail/road crossing and whether they are guarded or not. It also depends on certain situations, such as entering/leaving a station, passing through a tunnel, etc.

The infrastructures around the railroad can also cause occlusions. The risk is even higher if the track is not protected by barriers or if the train arrives at the beginning of a curve, in which case, the sensors do not cover the same field.

It is apparent that the annotation does not contain all these details. However, having all the criteria used to evaluate the situations, it is easier to design decision making algorithms to match the estimated scores on each metric. Fig. 3 illustrates an example of annotation performed on three images each corresponding to one of the three general risk levels: secure, moderate and high.

Annotation correlation

In order to study inter-rater agreement, several statistical measures were performed: the Cronbach's α measures, the Intraclass Correlation Coefficient (ICC) and the Krippendorff's α measures. These measures were applied to each modality to identify correlations within the same metric and between different metrics. Cronbach's α measures if a group of items (the annotators) consistently attributes scores to another set of subjects (the images). Its definition is the following one:

α = k k -1 (1 - ∑ k n=1 σ 2 Y n σ 2 X ) (1)
where σ 2 Y n is the variance of the scores of n th item, σ 2 X the total variance of the scores and k the number of items, i.e. 3 in our case. A value of 0.8 is considered [START_REF] Nunnally | Psychometric theory / Jum C. Nunnally[END_REF] as a good threshold for the Cronbach's α. The ICC scores are obtained through an ANOVA-based framework using the pysch R module.

Similarly to the Cronbach's α, the ICC ranges from 0 to 1. Interpretation guidelines [START_REF] Cicchetti | Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instrument in psychology[END_REF] suggest fair agreement between 0.4 and 0.59, good agreement between 0.6 and 0.74, and excellent agreement above. Finally the Krippendorff's α measures the ration between the actual disagreement and the expected disagreement by chance, ranging from -1 to 1. Negative values means a complete disagreement and 1 a perfect agreement between raters. In general, values larger than 0.667 can be considered to draw conclusions.

From the scales given above and the results obtained in Table 2, the three annotators share mainly a same consistency in their annotations. The correlation scores reveal two groups within the modalities: strong correlations among annotators for "weather", "light" and "users" and less consistency for "general" and "context". The common characteristic between the modalities of the first group is is their objectivity and explicit features. The risk of weather or light leaves very little room for personal interpretation. Similarly, the users risk mainly depends on the number of users, their distances to the train, their positions with respect to the tracks or their body orientations which are all factual and explicit features. The context modality is more inconsistent since it carries subjectivity and requires an in-depth analysis of the content in the scene. This may explain why there is very few work in the literature on contextual risk analysis. Since the general risk strongly depends on the context, i.e. annotators classify very few rural scenes as risky, the general risk also perceives this decrease in consistency.

To further investigate the annotations provided by the panel of annotators, it is interesting to consider the correlations between the general risk score associated with the situation, with respect to the different criteria: weather, light, users and context. This analysis is based on the Pearson score which can be computed for two samples of random variables with the following formula:

ρ x,y = n ∑ x i y i -∑ x i ∑ y i n ∑ x 2 i -(∑ x i ) 2 n ∑ y 2 i -(∑ y i ) 2 (2)
where x i and y i are sample points of the two respective random variables and n the size of both samples. From the graphs, the "users" and "context" modalities are much more correlated with general risk. Indeed, when the annotators put high values of risk for these two modalities, the general risk is most of the time set to "High" represented by the value 2 on the graph. Annotators often qualify the general risk as a collision risk and therefore give more weight to these two modalities. The Pearson correlation coefficient of the "users" and "context" modalities with respect to the general risk are 0.60 and 0.61 respectively which can be considered as high values. There is also a strong correlation (0.58) between the two modalities themselves since a risky context is often considered as a place where it is very likely to meet a user. However, this obviously does not imply that these modalities are interchangeable. Indeed, a highly urbanized area with no pedestrians cannot always be considered as safe as they may appear from obstructed areas. The "weather" and "light" modalities can be rather seen as exacerbating factors rather than risk causing factors. Indeed, Fig. 4 also shows that the highest level of risk for these modalities does not imply the highest level of general risk. The correlation for low values with the general risk is also very weak, i.e. annotators only take these modalities into account for the general risk when they reach relatively high values. This is again reflected in the Pearson correlation coefficient of 0.23 and 0.27 for the "weather" and "light" modalities respectively.

EXPERIMENTS

In this section, we propose several studies for the risk assessment using the proposed benchmark. Using the RGB images of the RailSem19 dataset [START_REF] Zendel | RailSem19: A Dataset for Semantic Rail Scene Understanding[END_REF] as input of a neural network, we perform a binary risk assessment: classification between secure and risky based on the different data modalities, different models and different data aggregation methods.

Evaluation protocol

Validation protocol In order to evaluate the decision making model and to check the good performance of the model when faced with unknown data, a stratified k-fold cross validation protocol is used, with k = 3. The data is partitioned into training and testing sets following an 80/20 distribution. The reported accuracy in the subsequent tables is derived from a balanced subset of the test set. Additionally, for various evaluations, the performances represent the average accuracy calculated across the three folds, along with the corresponding standard deviation.

Data imbalanced In risk analysis datasets, highrisk situations are generally under-represented, leading to data imbalance. The same applies to the proposed dataset, as illustrated in Fig. 5. First, to maintain the spatial coherence of the elements in the scene, e.i., image centered on the rail and environment on the sides, only a horizontal flip augmentation is applied. Poor results have been observed by applying augmentations on light changes or by adding noise (blur, distortion) to the images. Also, only a balanced sample data was selected in the training and test tasks since binary classes are very imbalanced and irregular between risk modalities.

Implementation Details

Two different models have been tested in this study : a CNN, and a Vision Transformer (ViT) [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]. The ViT has been pretrained on ImageNet-21k [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF]. The original clas-sifier head has been removed which is the fully connected one to replace it by a new one which fits our binary classification problem. We only train this new classifier since experiments have shown that unfreezing the last convolutional layer does not provided significant improvements. We implemented the model in PyTorch and conducted experiments on a single GeForce RTX 3060 GPU with 12GB VRAM. We employed the AdamW optimizer [START_REF] Loshchilov | Decoupled weight decay regularization[END_REF] with fixed learning rates of 0.01. The images are resized to a 224x224 shape and normalized using the mean and standard deviation of the ImageNet dataset [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF]. The batch size chosen is of size 32. Each model are trained for 30 epochs.

Quantitative experiment

A first baseline based on a binary danger or nondanger classification and the median aggregation function for labeling the risk level according to the 3 annotations is proposed in Table 3. We compare the performance of the CNN model and ViT model pretrained on ImageNET on the different modalities selected by the annotator panel: general risk (general), weather conditions, visibility (light), presence of vulnerable road users (users) and driving context related to the environment (context).

Considering the performances, the pre-trained ViT model gives the best performance, whatever the modality observed, showcasing the effectiveness of the ImageNet-based pre-training for this task. Given the results obtained on the different modalities, risk estimates based on visibility are well-identified for both models, while results for other modalities exhibit significant variations between models. The performance of the pre-trained ViT model underscores the potential of attention-based architectures in risk analysis.

To investigate the impact of subjective interpretation between annotators in model learning, a study of aggregation functions is carried out in Table 4. The functions correspond to the highest level of risk reported by the 3 annotators (Max), the lowest (Min) and the median (Median). For this study, only the pre-trained Vit model is used, given its better per- formance. Overall, considering the median score gives better performance. With regard to the different modalities, user-based risk is the most controversial between the Min and Max annotations. Two observations may explain this result. Firstly, the accident involving a human factor has a more serious denotation from the driver's point of view. In this case, one of the annotators considered that a car crossing the path of the train was less risky than a pedestrian. Secondly, few variations in the annotations were observed depending on the distance or position of the users in relation to the train. Indeed, one of the annotators considered that a pedestrian waiting on the platform did not represent a serious danger, whereas the other annotators tended to put a high level of danger as soon as the train was at a certain distance from the pedestrian, regardless of the context. Human interpretation may have a slight impact on risk annotation, particularly on the users and context modalities, so a study presented in Table 5 is proposed to determine which class separation strategy enhances the model's capacity to distinguish between risky and not-risky situations. Several strategies have been proposed, in the following format (non-risk score categories, risk score categories) : S1 {(0),(1-10)} ; S2 {(0),(6-10)} ; S3 {(0-2),(3-10)} and S4 {(0-5),(6-10)}. In view of the performances, the S2 strategy is the most suitable for risk discrimination between the different modalities. By excluding low scores, it's easier to separate the R and R classes. Small scores are often more open to human interpretation, and tend to vary between different users, particularly with regard to user-based risk. We propose the first framework on risk analysis for autonomous railway driving, named SMART-RD.

Based on the RailSem19 dataset, SMART-RD provides additional annotations on the general risk based on weather, light, users and context. A first study is performed on these data according to a binary danger or non-danger classification. The proposed baseline is based on traditional learning models in image processing and does not take into account recent advances in the literature for risk analysis. In future work, we explore more complex decision models better adapted to risk assessment, taking into account the per-modality annotation to assess the general risk.
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 1 Figure 1: Overview of the SMART-RD framework.
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 2 Figure 2: Risk annotation tools enabling to browse the Railsem19 dataset and to associate a risk level based on 5 criteria: general risk, weather, light, users and context according to 2 different scales.
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 3 Figure 3: Proposed annotations in SMART-RD.

Figure 4 :

 4 Figure 4: Mean general risk level for each value of the different criteria: weather, light, users and context.

Figure 5 :

 5 Figure 5: Distribution of data provided in SMART-RD according to each modality. Distribution histograms are enhanced by three images extracted from the dataset, representing scores of 0, 5 and 10 respectively.

Table 1 :

 1 

		Vision-based risk analysis dataset for autonomous
	driving. References: A-(Feth et al., 2018); B-(Wang
	and Kato, 2017); C-(Corcoran and Clark, 2019) and D-
	(Yurtsever et al., 2019).				
		References	A	B	C	D	Our
	Settings	Real Nb Data Type Availability	✗ 110k images video ✓ 1,890 ✗ ✗	✓ 1,750 video ✗	✓ 860 video ✗	✓ 8,500 images ✓
		Labels	score 3 levels 4 levels 5 levels 3 levels
	Annotations	Nb Anno. Temporal	auto	3 + 1	3	10	3

Table 2 :

 2 Different correlation scores applied on the annotations made by the panel of annotators according to the 5 criteria to evaluate the risk. (↑) The closer the score is to 1, the stronger the correlation is.

	Metric	General Weather Light Users Context
	Kripp. α ↑	0.59	0.72	0.74 0.78	0.68
	ICC(3,1) ↑	0.60	0.74	0.75 0.78	0.69
	Cronbach's α ↑	0.82	0.89	0.90 0.91	0.85

Table 3 :

 3 Comparison of the performance of learning models on the binary classification task on different modalities involving a risk for driving.

	Methods General Weather	Light	Users	Context
	CNN	65,67% 64,67% 73,67% 68,67% 69,00% ±2, 08 ±2, 08 ±1, 53 ±8, 39 ±5, 20
	ViT pre.	77,67% 76,00% 75,33% 81,33% 76,00% ±2, 08 ±2, 65 ±7, 37 ±3, 51 ±1, 00

Table 4 :

 4 Comparison of the data aggregation functions used with the pretrained vision transformers.

	Aggregation General Weather	Light	Users	Context
	Maximum	77,00% 75,33% 74,00% 79,67% 74,33% ±0, 00 ±4, 16 ±3, 00 ±3, 21 ±1, 53
	Minimum	72,33% 69,67% 75,67% 66,00% 79,33% ±3, 21 ±3, 79 ±3, 06 ±3, 61 ±8, 33
	Median	77,67% 76,00% 75,33% 81,33% 76,00% ±2, 08 ±2, 65 ±7, 37 ±3, 51 ±1, 00

Table 5 :

 5 Comparison of the binary class (risky (R) and nonrisky (R)) separation methods used with the pretrained ViT.

	Strategy Separation Weather	Light	Users	Context
	S1	R:(0) R:(1-10)	70,67% 87,00% 81,67% 77,33% ±6, 66 ±3, 00 ±5, 86 ±4, 51
	S2	R:(0) R:(6-10)	86,33% 94,33% 80,67% 88,67% ±4, 51 ±1, 53 ±7, 51 ±5, 03
	S3	R:(0-2) R:(3-10)	80,33% 86,00% 66,67% 80,00% ±4, 51 ±1, 00 ±5, 03 ±2, 65
	S4	R:(0-5) R:(6-10)	77,00% 93,33% 77,67% 77,00% ±10, 44 ±2, 31 ±6, 11 ±4, 58
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