A novel approach to parallel anomaly detection: application in cybersecurity - Laboratoire d'Informatique Parallélisme Réseaux Algorithmes Distribués
Communication Dans Un Congrès Année : 2023

A novel approach to parallel anomaly detection: application in cybersecurity

Résumé

Introducing the Scalable Anomaly Detection with UC2B framework, this paper addresses the critical task of identifying unusual patterns in data, crucial for effective cyber threat defense. By leveraging ensemble learning methods and the parallel processing capabilities of the Unite and Conquer approach, the framework demonstrates its proficiency in handling large datasets. It strives to offer computational efficiency, scalability, and high accuracy in real-world applications. Notably, this paper places special emphasis on the diversity of components and acknowledges their substantial influence on the overall framework functionality. It encompasses features such as fault tolerance, adaptability to various architectures, and efficient load balancing. Experimental validation on the Ruche Cluster within the realm of cybersecurity provides valuable insights into its potential in detecting anomalies.
Fichier principal
Vignette du fichier
Prallel_UC2B_Cybersecurity.pdf (724 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04379345 , version 1 (05-02-2024)

Identifiants

Citer

Ziani Zineb, Emad Nahid, Bouaziz Ahmed. A novel approach to parallel anomaly detection: application in cybersecurity. IEEE BigData 2023 - 2023 IEEE International Conference on Big Data, Dec 2023, Sorrente, Italy. pp.3574-3583, ⟨10.1109/BigData59044.2023.10386715⟩. ⟨hal-04379345⟩
119 Consultations
86 Téléchargements

Altmetric

Partager

More